Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Thymidine incorporation into DNA was inhibited dose-dependently by β-endorphin in rat fetal brain cell aggregate cultures. The inhibition was reversed partially by μ (cyclic D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide) or k (norbinaltorphimine) antagonists. Complete blockade of the β-endorphin inhibitory effect was achieved only on concomitant exposure to both antagonists. Eadie–Hofstee analysis revealed that β-endorphin inhibited thymidine incorporation noncompetitively. In the presence of protease inhibitors, β-endorphin decreased thymidine incorporation with an IC50 of 0.7 nM. Truncated and N-acetylated β-endorphin derivatives, which bind with low affinity to opioid receptors, did not affect thymidine incorporation. These findings indicate that β-endorphin at physiological concentrations can regulate thymidine incorporation in cultured brain cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: : Acute treatment of rat spinal cord-dorsal root ganglion cocultured neurons with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known activator of protein kinase C, inhibited the dihydropyridinc-sensitive voltage-dependent 45Ca2+ influx measured in these cells (IC50 of⋍100 nM, 66% inhibition at 1 νM TPA). However, prolonged preincubation (24 h) of the cells with 100 nM TPA followed by extensive washing completely abolished, i.e., desensitized, the capacity of a second application of TPA to inhibit the activity of the voltage-dependent Ca2+ channels. Moreover, this treatment also abolished the inhibition of Ca2+ influx produced by k-opiate as well as by α2-adrenergic and muscarinic receptor agonists. Substantial desensitization was already observed following a 1-h pretreatment with 100 nMTPA. In contrast to TPA, an inactive phorbol ester (4β-phorbol 13-acetate) did not affect the inhibition of the voltage-dependent Ca2+ influx by these receptor agonists. These results suggest that protein kinase C may have a role in the modulation of Ca2+channels by k-opiate, α2-adrenetgic, and muscarinic receptor agonists.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cocultures of spinal cord and dorsal root ganglion cells contain relatively high concentrations of k-opiate receptors. We have previously shown that acute k-opiate agonist treatment reduces phosphorylation of synapsin I stimulated by depolarizing agents (such as 60 mM KCl). Here we show that prolonged opiate treatment increases the levels of synapsin I immunoreactivity in the cells. Several opiate agonists, such as U50488, ethylketocyclazocine, dynorphin, and [D-Ala2,D-Leu5]enkephalin, caused a 3.0–3.4-fold increase in the immunoreactive level of synapsin I. The effect of the k-agonist U50488 on the up-regulation of synapsin I was dose dependent and was blocked by the k-opiate antagonist norbinaltorphimine. The results suggest that continued activation of opiate receptors by chronic agonist treatment up-regulates the levels of synapsin I. This increase in synapsin I could contribute to the development of tolerance to opiates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Desensitization or tolerance is a major consequence of long-term opiate exposure. The mechanism of opiate desensitization is only poorly understood. We report that exposure of raj spinal cord-dorsal root ganglion cocultured neurons to k-opiate agonists is accompanied by a 60–70% reduction in the level of the αi subunit of GTP-binding proteins. Using selective antibodies, which discriminate among the various αi subunit forms, it was found that the opiate treatment leads to a reduction in the amount of the αi-1 subunit. The levels of αs, αo, and β subunits remain unchanged. Tnis molecular event could underlie the development of tolerance and cross-tolerance to opiates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The nature of the opiate modulation of adenylate cyclase following acute and chronic agonist exposure has been investigated in rat spinal cord. Using membranes of both adult rat spinal cord and spinal cord-dorsal root ganglion cocultures, we found that K-opiate receptors are negatively coupled to adenylate cyclase. The K-opiate agonists (e.g., U50488) inhibit significantly and dose-dependently the basal and the forskolin-stimulated cyclase activities, whereas μ and δ agonists are ineffective. The regulatory action is stereospecific and requires the presence of GTP. EGTA treatment of the plasma membranes abolished the effect of K-opiate agonists on the basal cyclase activity, and this inhibitory effect could not be restored by subsequent addition of Ca2+. The EGTA treatment did not affect the K agonist inhibition of the forolin-stimulated cyclase. The results also show that following chronic exposure of cultured cells to etorphine or U50488, there is a loss of K agonist inhibition of the cyclase. Moreover, this desensitization process appears to be heterologous, because α2-adrenergic agonists (e.g., clonidine or norepinephrine) and the muscarinic agonist (carbachol) exhibited significantly lower potency for inhibiting cyclase activity when compared to untreated cultures. This pattern of heterologous desensitization suggests that chronic exposure to K opiates leads to alterations in postreceptor regulatory components, possibly GTP-binding proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A putative endogenous cannabinoid ligand, arachidonylethanolamide (termed “anandamide”), was isolated recently from porcine brain. Here we demonstrate that this compound is a specific cannabinoid agonist and exerts its action directly via the cannabinoid receptors. Anandamide specifically binds to membranes from cells transiently (COS) or stably (Chinese hamster ovary) transfected with an expression plasmid carrying the cannabinoid receptor DNA but not to membranes from control non-transfected cells. Moreover, anandamide inhibited the forskolin-stimulated adenylate cyclase in the transfected cells and in cells that naturally express cannabinoid receptors (N18TG2 neuroblastoma) but not in control nontransfected cells. As with exogenous cannabinoids, the inhibition by anandamide of the forskolin-stimulated adenylate cyclase was blocked by treatment with pertussis toxin. These data indicate that anandamide is an endogenous agonist that may serve as a genuine neurotransmitter for the cannabinoid receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 8 (1969), S. 5161-5168 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cannabinoids are widely abused drugs. Here we show that chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC), the active psychotropic agent in marijuana and hashish, at 1.5 mg per kg per day intraperitoneally for 7 days, increases the expression, at both mRNA and protein levels, of brain-derived neurotrophic factor (BDNF), in specific rat brain areas, notably in those involved in reward and addiction. Real-time PCR revealed a 10-fold up-regulation of BDNF mRNA in the nucleus accumbens (NAc) upon chronic Δ9-THC treatment, but there was no change at 3 or 24 h after a single injection. Smaller increases in mRNA levels were found in the ventral tegmental area (VTA), medial prefrontal cortex and paraventricular nucleus (PVN). Immunohistochemistry showed large increases in BDNF-stained cells in the NAc (5.5-fold), posterior VTA (4-fold) and PVN (1.7-fold), but no change was observed in the anterior VTA, hippocampus or dorsal striatum. Altogether, our study indicates that chronic exposure to Δ9-THC up-regulates BDNF in specific brain areas involved with reward, and provides evidence for different BDNF expression in the anterior and posterior VTA. Moreover, BDNF is known to modulate synaptic plasticity and adaptive processes underlying learning and memory, leading to long-term functional and structural modification of synaptic connections. We suggest that Δ9-THC up-regulation of BDNF expression has an important role in inducing the neuroadaptive processes taking place upon exposure to cannabinoids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 71 (1998), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Two cannabinoid receptors belonging to the superfamily of G protein-coupled membrane receptors have been identified and cloned: the neuronal cannabinoid receptor (CB1) and the peripheral cannabinoid receptor (CB2). They have been shown to couple directly to the Gi/o subclass of G proteins and to mediate inhibition of adenylyl cyclase upon binding of a cannabinoid agonist. In several cases, however, cannabinoids have been reported to stimulate adenylyl cyclase activity, although the mechanism by which they did so was unclear. With the cloning of nine adenylyl cyclase isozymes with various properties, including different sensitivities to αs, αi/o, and βγ subunits, it became important to assess the signaling pattern mediated by each cannabinoid receptor via the different adenylyl cyclase isozymes. In this work, we present the results of cotransfection experiments between the two types of cannabinoid receptors and the nine adenylyl cyclase isoforms. We found that independently of the method used to stimulate specific adenylyl cyclase isozymes (e.g., ionomycin, forskolin, constitutively active αs, thyroid-stimulating hormone receptor activation), activation of the cannabinoid receptors CB1 and CB2 inhibited the activity of adenylyl cyclase types I, V, VI, and VIII, whereas types II, IV, and VII were stimulated by cannabinoid receptor activation. The inhibition of adenylyl cyclase type III by cannabinoids was observed only when forskolin was used as stimulant. The activity of adenylyl cyclase type IX was inhibited only marginally by cannabinoids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...