Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1527-3458
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The development of treatments for acute neurodegenerative diseases (stroke and brain trauma) has focused on (i) re-establishing blood flow to ischemic areas as quickly as possible (i.e. mainly antithrombotics or thrombolytics for stroke therapy) and (ii) on protecting neurons from cytotoxic events (i.e. neuroprotective therapies such as anti-excitotoxic or anti-inflammatory agents for stroke and neurotrauma therapies). This paper reviews the preclinical data for enoxaparin in in vivo models of ischemia and brain trauma in rats. Following a photothrombotic lesion in the rat, enoxaparin significantly reduced edema at 24 h after lesion when the treatment was started up to 18 h after insult. Enoxaparin was also tested after an ischemic insult using the transient middle cerebral artery occlusion (tMCAO) model in the rat. Enoxaparin, 2 × 1.5 mg/kg i.v., significantly reduced the lesion size and improved the neuroscore when the treatment was started up to 5 h after ischemia. Enoxaparin, administered at 5h after insult, reduced cortical lesion size in a dose-dependent manner. In permanent MCAO, enoxaparin (5 and 24 h after insult) significantly reduced lesion size and improved neuroscore. A slight and reversible elevation of activated partial thromboplastin time (APTT) suggests that enoxaparin is neuroprotective at a non-hemorrhagic dose. Traumatic brain injury (TBI) is often accompanied by secondary ischemia due in part to edema-induced compression of blood vessels. When enoxaparin, at 0.5 mg/kg i.v. + 4 × 1 mg/kg s.c., was administered later than 30h after TBI, it significantly reduced edema in hippocampus and parietal cortex. At one week after TBI the lesion size was significantly reduced and the neurological deficit significantly improved in enoxaparin treated animals. Finally, the cognitive impairment was significantly improved by enoxaparin at 48 h to 2 weeks after TBI. The anticoagulant properties of unfractionated heparin and specifically enoxaparin can explain their anti-ischemic effects in experimental models. Furthermore, unfractionated heparin and specifically enoxaparin, have, in addition to anticoagulant, many other pharmacological effects (i.e. reduction of intracellular Ca2+ release; antioxidant effect; anti-inflammatory or neurotrophic effects) that could act in synergy to explain the neuroprotective activity of enoxaparin in acute neurodegenerative diseases. Finally, we demonstrated, that in different in vivo models of acute neurodegenerative diseases, enoxaparin reduces brain edema and lesion size and improves motor and cognitive functional recovery with a large therapeutic window of opportunity (compatible with a clinical application). Taking into account these experimental data in models of ischemia and brain trauma, the clinical use of enoxaparin in acute neurodegenerative diseases warrants serious consideration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The time course of changes in extracellular glutamic acid levels and their Ca2+ dependency were studied in the rat striatum during focal cerebral ischaemia, using microdialysis. Ischaemia-induced changes were compared with those produced by high K+-evoked local depolarization. To optimize time resolution, glutamate was analysed continuously as the dialysate emerged from the microdialysis probe by either enzyme fluorimetry or biosensor. The Ca2+ dependency of glutamate changes was examined by perfusing the probe with Ca2+-free medium. With normal artificial CSF, ischaemia produced a biphasic increase in extracellular glutamate, which started from the onset of ischaemia. During the first phase lasting ∼10 min, dialysate glutamate level increased from 5.8 ± 0.9 µM· min−1 to 35.8 ± 6.2 µM where it stabilized for ∼3 min. During the second phase dialysate glutamate increased progressively to its maximum (82 ± 8 µM), reached after 55 min of ischaemia, where it remained for as long as it was recorded (3 h). The overall changes in extracellular glutamate were similar when Ca2+ was omitted from the perfusion medium, except that the first phase was no longer detectable and, early in ischaemia, extracellular glutamate increased at a significantly slower rate than in the control group (2.2 ± 1 µM· min−1; p 〈 0.05). On the basis of these data, we propose that most of the glutamate released in the extracellular space in severe ischaemia is of metabolic origin, probably originating from both neurons and glia, and caused by altered glutamate uptake mechanisms. Comparison with high K+-induced glutamate release did not suggest that glutamate “exocytosis,” early after middle cerebral artery occlusion, was markedly limited by deficient ATP levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...