Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 1311-1314 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of thermal annealing on the InAlAs/InGaAs modulation-doped structure, passivated with a SiN film, was investigated. In contrast to the capless sample, the passivated modulation-doped sample exhibited negligible degradation in the two-dimensional electron gas concentration (NS) after annealing at 280 °C, indicating that SiN is an efficient passivation material to ensure good thermal stability for the InAlAs/InGaAs modulation-doped structure. In addition, partial recovery in NS was found by annealing the SiN-passivated sample that had experienced serious NS degradation. A series of secondary ion mass spectroscopy (SIMS) measurements and Hall effect measurements revealed that the recovery of NS is associated with the discharge of fluorine atoms from the Si-doped n-type InAlAs layer. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 2459-2461 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The quantitative relation between fluorine (F) accumulation and Si donor concentration in n-InAlAs layers on InP substrate was investigated for several kinds of step-doped InAlAs samples using secondary ion mass spectroscopy. From the depth profile of F and Si donors in a periodic i-/n-InAlAs sample, we found that F accumulates only in n-InAlAs layers, passing through i-InAlAs layers. We also found that the amount of F accumulation in an n-InAlAs layer depends on the Si doping concentration. The experimental results can be explained by considering two states of F. In one state, F is bound to a Si donor and immobile, and in the other it is free and can diffuse. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...