Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 3491-3504 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The "passivated emitter and rear locally diffused'' (PERL) silicon solar cell structure presently demonstrates the highest terrestrial performance of any silicon-based solar cell. This paper presents a detailed investigation of the limiting loss mechanisms in PERL cells exhibiting independently confirmed 1-sun efficiencies of up to 23.0%. Optical, resistive, and recombinative losses are all analyzed under the full range of solar cell operating conditions with the aid of two-dimensional (2D) device simulations. The analysis is based on measurements of the reflectance, quantum efficiency, dark and illuminated current–voltage (I–V) characteristics, and properties of the Si–SiO2 interfaces employed on these cells for surface passivation. Through the use of the 2D simulations, particular attention has been paid to the magnitudes of the spatially resolved recombination losses in these cells. It is shown that approximately 50% of the recombination losses at the 1-sun maximum power point occur in the base of the cells, followed by recombination losses at the rear and front oxidized surfaces (25% and 〈25%, respectively). The relatively low fill factors of PERL cells are principally a result of resistive losses; however, the recombination behavior in the base and at the rear surface also contributes. This work predicts that the efficiency of 23% PERL cells could be increased by about 0.7% absolute if ohmic losses were eliminated, a further 1.1% absolute if there were no reflection losses at the nonmetallized front surface regions, about 2.0% by introducing ideal light trapping and eliminating shading losses due to the front metallization, and by about 3.7% absolute if the device had no defect-related recombination losses. New design rules for future efficiency improvements, evident from this analysis, are also presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1991-1993 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Multicrystalline silicon wafers, widely used in commercial photovoltaic cell production, traditionally give much poorer cell performance than monocrystalline wafers (the previously highest performance laboratory devices have solar energy conversion efficiencies of 18.6% and 24.0%, respectively). A substantially improved efficiency for a multicrystalline silicon solar cell of 19.8% is reported together with an incremental improvement in monocrystalline cell efficiency to 24.4%. The improved multicrystalline cell performance results from enshrouding cell surfaces in thermally grown oxide to reduce their detrimental electronic activity and from isotropic etching to form an hexagonally symmetric "honeycomb" surface texture. This texture reduces reflection loss as well as substantially increasing the cell's effective optical thickness by causing light to be trapped within the cell by total internal reflection. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 1363-1365 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new silicon solar cell structure, the passivated emitter and rear cell, is described. The cell structure has yielded independently confirmed efficiencies of up to 22.8%, the highest ever reported for a silicon cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 412 (2001), S. 805-808 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Considerable effort is being expended on the development of efficient silicon light-emitting devices compatible with silicon-based integrated circuit technology. Although several approaches are being explored, all presently suffer from low emission efficiencies, with values in the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...