Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Guanine nucleotide binding proteins (G proteins) have been implicated in the pathophysiology of bipolar affective disorder. In the present investigation receptor-mediated G protein activation and changes in G protein trimeric state were examined in frontal cortical membranes obtained from postmortem brains of bipolar affective disorder subjects and from age-, sex-, and postmortem interval-matched controls. Stimulation of cortical membranes with serotonin, isoproterenol, or carbachol increased guanosine 5′-O-(3-[35S]thiophosphate) ([35S]GTPγS) binding to specific Gα proteins in a receptor-selective manner. The abilities of these receptor agonists to stimulate the binding of [35S]GTPγS to the Gα proteins was enhanced in membranes from bipolar brains. Immunoblot analyses showed increases in the levels of membrane 45- and 52-kDa Gαs proteins but no changes in the amounts of Gαi, Gαo, Gαz, Gαq/11, or Gβ proteins in membrane or cytosol fractions of bipolar brain homogenates. Pertussis toxin (PTX)-activated ADP-ribosylations of Gαi and Gαo were enhanced by ∼80% in membranes from bipolar compared with control brains, suggesting an increase in the levels of the trimeric state of these G proteins in bipolar disorder. Serotonin-induced, magnesium-dependent reduction in PTX-mediated ADP-ribosylation of Gαi/Gαo in cortical membranes from bipolar brains was greater than that observed in controls, providing further evidence for enhanced receptor-G protein coupling in bipolar brain membranes. In addition, the amounts of Gβ proteins that coimmunoprecipitated with the Gα proteins were also elevated in bipolar brains. The data show that in bipolar brain membrane there is enhanced receptor-G protein coupling and an increase in the trimeric state of the G proteins. These changes may contribute to produce exaggerated transmembrane signaling and to the alterations in affect that characterize bipolar affective disorder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of age on the activity and translocation of protein kinase C (PKC) and on the facilitation of 5-hydroxytryptamine (5-HT, serotonin) release induced by PKC activation with the phorbol ester phorbol 12-myristate 13-acetate were investigated. The activities of cortical PKC and its translocation in response to K+ depolarization and phorbol ester stimulation were reduced during aging in Fischer-344 rats. Parietal cortical brain slices from 6-, 12-, and 24-month-old animals were preloaded with [3H]5-HT and release was evoked by 65 mM K+ or the calcium ionophore A23187. 5-HT release induced by either K+ or A23187 was found to be reduced in 12- and 24-month-old as compared to 6-month-old animals. This decrease was not reversed by high extracellular Ca2+. Activation of PKC resulted in a facilitated transmitter release in tissue from 6- and 12-month-old animals but reduced [3H]5-HT release in slices from 24-month-old animals. These responses were prevented by the putative PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), but not by increasing extracellular or intracellular Ca2+. The results demonstrate an age-related change (1) in brain PKC activity and translocation and (2) in a physiological response to PKC stimulation. These results may have implications for other PKC-mediated functions that are altered during senescence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of acute and chronic lithium treatments on 5-hydroxytryptamine (5-HT, serotonin) release and on its regulation by presynaptic 5-HT autoreceptors was studied in [3H]5-HT preloaded superfused rat brain slices. The [3H]5-HT overflow evoked by a 30-s exposure to 65 mM K+ was increased after 3 weeks of ingestion of lithium-containing diet in the three brain areas examined. Acute injection of 4 mEq/kg lithium chloride did not affect 5-HT release. The K+-induced release observed in both control and chronically lithium-treated animals was Ca2+-dependent. Chronic lithium treatment was also found to be associated with a decrease in basal [3H]5-HT overflow in the cortex and hypothalamus and with an increase in spontaneous hippocampal 5-HT overflow. The Ca2+-independent overflow induced by fenfluramine was also decreased in cortical slices from lithium-treated animals. The sensitivity of the inhibitory 5-HT autoreceptors was assessed by the response to the 5-HT agonist 5-methoxytryptamine. The results indicate a marked reduction in the maximal inhibition of [3H]5-HT release induced by 5-methoxytryptamine in slices obtained from animals which have been treated with lithium for 3 weeks. These data suggest that the functional down regulation of the prejunctional 5-HT sites may be responsible for the increase in K+-stimulated 5-HT overflow in brain slices of animals treated chronically with lithium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 63 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 nM but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Platelet-activating factor (PAF) may be a neuromodulator involved in neural cell differentiation, cerebral inflammation, and ischemia. The PAF receptor is a member of the G protein-coupled receptor superfamily. In the present study, we sought to define the specific G protein(s) that mediate PAF-stimulated phosphoinositide (PI) metabolism in an immortalized hippocampal cell line, HN33.11. PAF increased the production of 3H-labeled inositol phosphates (IPs) with EC50 values of 1.2–1.5 nM. The effect of PAF on 3H-IPs formation was completely blocked by the PAF antagonist BN 50739 at a concentration of 300 nM. Pertussis toxin pretreatment attenuated PAF-stimulated 3H-IPs production by 20–30% (p 〈 0.05). Consistent with a role for Gi1/2 in this response, antiserum against Gαi1/2 blocked the response to a similar degree. Pretreatment of permeabilized cells with Gαq/11 antiserum attenuated the response by 70% (p 〈 0.05), suggesting a role for Gq/11 in mediating the PAF response in this cell line. Stimulation with PAF increased [α-32P]-GTP binding to both Gαq and Gαi1/2 proteins. Moreover, specific [3H]PAF binding sites coprecipitated with Gαq and Gαi1/2 proteins. The results suggest that PAF-stimulated PI metabolism in HN33.11 cells is mediated by both Gq and Gi1/2 proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 47 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of the Red Sea flatfish toxin pardaxin was examined on K+-evoked and on basal release of either [3H]norepinephrine or [3H]5-hydroxytryptamine from preloaded rat cortical slices. The K+-induced release of the neurotransmitters was stimulated in a dose-related manner at concentrations ranging from 0.5 to 4 μg/ml. Basal release of the two transmitters was elevated to a lesser extent. Although the stimulation of evoked release was approximately equivalent for the two neurotransmitters, the response to 5-hydroxytryptamine was reversible whereas that of norepinephrine was not washed by 20 min of superfusion. The mechanisms involved in producing these actions of pardaxin are not known; however, they may be mediated by changes in electrolyte fluxes across the neuronal membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 78 (2001), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have revealed that activation of rat striatal D1 dopamine receptors stimulates both adenylyl cyclase and phospholipase C via Gs and Gq, respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D1 dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D1 dopamine receptors couple differentially to multiple Gα protein subunits. Antisera against Gαq blocks dopamine-stimulated PIP2 hydrolysis in hippocampal and in striatal membranes. The binding of [35S]GTPγS or [α-32P]GTP to Gαi was enhanced in all brain regions. Dopamine also increased the binding of [35S]GTPγS or [α-32P]GTP to Gαq in these brain regions: hippocampus = amygdala 〉 frontal cortex. However, dopamine-stimulated binding of [35S]GTPγS to Gαs only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Gα proteins. Dopamine induced increases in GTPγS binding to Gαs and Gαq was blocked by the D1 antagonist SCH23390 but not by D2 receptor antagonist l-sulpiride, suggesting that D1 dopamine receptors couple to both Gαs and Gαq proteins. Co-immunoprecipitation of Gα proteins with receptor-binding sites indicate that in the frontal cortex, D1 dopamine-binding sites are associated with both Gαs and Gαq and, in hippocampus or amygdala, D1 dopamine receptors couple solely to Gαq. The results indicate that in addition to the D1/Gs/adenylyl cyclase system, brain D1-like dopamine receptor sites activate phospholipase C through Gαq protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous studies have established that dopamine (DA) can stimulate phosphoinositide (PI) metabolism in the CNS and in the periphery. The present study summarizes our attempt to find a cell line that expresses this dopaminergic system. We describe that the stable clonal HN33.11 cell line, established by fusion of mouse hippocampal cells with neuroblastoma cells (N18TG2) that originate from A/J mouse, natively expresses the D1 DA receptor system that couples to PI hydrolysis. In this cell line, 500 µM DA or SKF38393 produced 43 and 75% increases in inositol phosphate (IP) accumulations, respectively. In contrast, noradrenaline or 5-hydroxytryptamine did not affect IP accumulations. The formation of IP that was stimulated by DA or SKF38393 was selectively blocked by the D1 DA receptor antagonist SCH23390 with IC50 values of 13 and 16 µM. This response was not mediated by the D1A DA receptor and was cyclic AMP-independent, as HN33.11 cells did not express this receptor, and DA or SKF38393 was unable to stimulate the formation of cyclic AMP. In Ca2+-free/100 µM EGTA medium, basal IP level was reduced by 31.5%, but SKF38393-stimulated PI hydrolysis was not affected. SKF38393-stimulated IP accumulation was also not affected by pertussis toxin (PTX) treatment (200 ng/ml), suggesting that this dopaminergic response is mediated by PTX-insensitive G proteins. Co-immunoprecipitation studies indicated that in membranes of HN33.11 cells, D1-like binding sites are coupled to Gαq protein. Blockade of SKF38393-induced PI hydrolysis with antiserum against phospholipase C (PLC) isozymes, performed in permeabilized cells, as well as co-immunoprecipitation studies implicate PLCβ3 and PLCβ4 in this dopaminergically mediated PI hydrolysis cascade. The results indicate that HN33.11 cells express a D1-like DA receptor that couples to PLCβ3/4 via Gαq protein. These cells may therefore be a useful model system for investigating this receptor system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 75 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We have recently reported evidence that a very high affinity interaction between the β-amyloid peptide Aβ1-42 and the α7 nicotinic acetylcholine receptor (α7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Aβ1-42 to α7nAChR and α4β2nAChR were determined using the subtype-selective nicotinic receptor ligands [3H]methyllycaconitine and [3H]cytisine. Synaptic membranes prepared from rat and guinea pig cerebral cortex and hippocampus were used as the source of receptors. Aβ1-42 bound to the α7nAChR with exceptionally high affinity, as indicated by Ki values of 4.1 and 5.0 pM for rat and guinea pig receptors, respectively. When compared with the α7nAChR, the affinity of Aβ1-42 for the α4β2nAChR was ∼5,000-fold lower, as indicated by corresponding Ki values of 30 and 23nM. The results of this study support the concept that an exceptionally high affinity interaction between Aβ1-42 and α7nAChR could serve as a precipitating factor in the formation of amyloid plaques and thereby contribute to the selective degeneration of cholinergic neurons that originate in the basal forebrain and project to the cortex and hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The involvement of platelet-activating factor (PAF) in cell damage induced by ischemia/postischemia-like conditions was studied in a hippocampus-derived cell line, HN33.11. Cells exposed to N2-saturated glucose-free HEPES-buffered saline (ischemia) for 5 h followed by 18 h of incubation in serum-free control medium (postischemia reincubation) remained 67.4 ± 2.4% viable in comparison with sham-treated cells. Analysis of DNA fragmentation in combination with Hoechst 33258 staining indicates that apoptosis is the dominant mode of cell death in the present model. PAF level during 10 h of ischemia was unchanged. However, an increase in PAF accumulation was found early during the reincubation period that followed 5 h of ischemia. Peak PAF concentrations were noted at 2 h after initiation of reincubation and rapidly declined to control level after 7 h of reincubation. Consistent with a role of PAF in mediating cell death under ischemia/postischemia reincubation in this model, the PAF antagonist BN 50739 exerted a dose-dependent protective effect. Maximal protection (85.7 ± 5.4%) of the cells from ischemia/reincubation-induced cell damage was achieved at 0.1 µM BN 50739. The PAF antagonist lacked any protective effect against ischemia-induced cell death. On the other hand, the addition of the stable PAF analogue 1-O-hexadecyl-2-N-methylcarbamyl-sn-glycero-3-phosphocholine (MC-PAF) at the onset of ischemia potentiated ischemia/reincubation-induced apoptosis—an effect that was blocked by BN 50739. Pretreatment of HN33.11 cells with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester (BAPTA-AM) also provided a protective effect against ischemia/reincubation-induced cell damage. BAPTA-AM increased cell viability by 50%. Pretreatment with BAPTA-AM also decreased ischemia/reincubation-induced PAF accumulation in HN33.11 cells. The results suggest that PAF, acting via a PAF receptor, is at least in part mediating apoptosis under ischemia/postischemia-like conditions in HN33.11 cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...