Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    International journal of numerical methods for heat & fluid flow 8 (1998), S. 153-168 
    ISSN: 0961-5539
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A turbulent kinetic theory due to Chung and a Green's function method by Hong were employed to solve a reacting turbulent plane jet problem. An instantaneous mixing concept was used to simulate the steady state of turbulent plane jet with combustion. The probability density function description of the fluid elements in a turbulent reacting flow could properly explain the turbulent flame zone structure and the turbulent transport of heat, momentum and chemical species even under the infinitely fast reaction rate assumption. The calculated distributions of the various moments of the turbulent combustion field were found in good agreement with the available experimental data. The dynamic behaviour of combustion in the turbulent field could be better understood via the probability density function description of the present turbulent kinetic theory approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 83-107 
    ISSN: 0271-2091
    Keywords: Kinetic theory of turbulence ; Multiple jets ; Turbulent mixing ; PDF ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Turbulent mixing of a single jet, twin jets, triple jets and multiple jets is synthetically analysed in this paper. Chung's kinetic theory of turbulence and a modified Green's function are employed to solve this problem. The probability density function of fluid elements in the velocity space of multiple plane jets and the corresponding turbulence correlations are revealed in this analysis. The calculated results are found to be in good agreement with the available experimental data. The internal physical structure of the turbulent mixing mechanism seems better understood via the kinetic theory approach. The present study provides the fundamentals for theoretical understanding of multiple-jet turbulent mixing and further application to multiple-jet turbulent combustion analysis.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...