Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 7 (1991), S. 439-444 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 8 (1992), S. 244-251 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1440-1797
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: SUMMARY:  Recent progress in biotechnology offers the promise of better medical care at lower costs. Among the techniques that show the greatest promise is mass spectrometry of proteins, which can identify proteins present in body fluids and tissue specimens at a large scale. Because urine can be collected in large amounts in a non-invasive fashion, the potential exists to use mass spectrometry to discover urinary biomarkers that are early predictors of renal disease, or useful in making therapeutic choices. Recently, the authors demonstrated that both membrane proteins and cytosolic proteins from renal epithelia are highly enriched in low-density urinary structures identified as exosomes. Exosomes were found to contain many disease-associated proteins including aquaporin-2, polycystin-1, podocin, non-muscle myosin II, angiotensin-converting enzyme, Na+K+2Cl- cotransporter (NKCC2), thiazide-sensitive Na-Cl cotransporter (NCC), and epithelial sodium channel (ENaC). Potentially, other disease biomarkers could be discovered by mass spectrometry-based proteomic studies in well-defined patient populations. Herein is described the advantages of using urinary exosomes as a starting material for biomarker discovery. In addition, the purpose of this review is to present an overall strategy for biomarker discovery in urine using exosomes and for developing cost-effective clinical assays for these biomarkers, which can potentially be used for early detection of disease, as a means of differential diagnosis, or as a means of guiding therapy. Finally, potential barriers that need to be overcome before urinary proteomics can be applied clinically, are emphasized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology techniques 5 (1991), S. 205-208 
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The α-amylase assay method with RBB-starch was shown to work well in the presence of polyethylene glycol and dextran, polymers commonly used in aqueous two-phase systems. Neither the polymer type, polymer concentration, nor molecular weight affected the α-amylase activity measurement. On the other hand, the same polymers significantly interfered with the Nelson copper method, the DNS method, and the iodine-starch method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology techniques 5 (1991), S. 349-354 
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A simple, inexpensive apparatus wholly consisting of readily available components is developed to measure the local volumetric gas holdup in aerated agitated bioreactors based on the principle of phase separation. The device can determine the gas holdup to as low as 0.1% with a measurement error of less than 10%. To prevent under-withdrawing or over-withdrawing the dispersed gas, a sampling rate yielding a superficial velocity at the sampling probe opening equal to ∼50% of the stirrer tip speed is recommended.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology techniques 5 (1991), S. 241-246 
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Analysis of the errors caused by a drift in background fluorescence is performed for a fluorescence probe operated in a backscatter configuration. In some cases, significant errors can result if changes in background fluorophores during the course of fermentation are not accounted for. It is shown that the probe's sensitivity to background fluorophores must be considered to calibrate a fluorescence probe properly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 907-922 
    ISSN: 0006-3592
    Keywords: fluorescene monitoring ; inner-filter effect ; biosensor ; tryptophan ; tyrosine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An extensive fluorescence database for binary tyrosinetryptophan mixtures utilizing 280 nm excitation was collected. The database spanned three orders of magnitude (10-6M-10-3M) and covered all compositions within this range. A generalized model for describing the multicomponent fluorescence signals as a function of emission wavelength, excitation wavelength, and sample composition was derived. A geometric integral that contained all the geometric factors affecting fluorescence was introduced; thus the model was applicable to various configurations, including the three used in this study: an NADH probe, a backscatter laser-induced fluorescence setup, and a commercial spectroflurometer. A correction factor was proposed that allowed linearization of the fluorescence signals with respect to fluorophore concentrations. The effect of the water Raman on fluorescence spectra was also modeled. The model contains only two wavelength-dependent parameters for each of the components present in a sample, one specifying absorption of the excitation energy and the other specifying the species' fluorescence tendency. These wavelength-dependent parameters were correlated with polynomials. The average prediction error at each wavelength was 10-20%, a major portion of which was attributed to experimental uncertainties.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 2177-2208 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A systematic method is presented which is capable of both detecting the presence of grossly biased measurement errors and locating the source of these errors in a bioreactor through statistical hypothesis testing. Equality constraints derived from material and energy balances are employed for the detection of data inconsistencies and for the subsequent identification of the suspect measurements by a process of data analysis and rectification. Maximum likelihood techniques are applied to the estimation of the states and parameters of the bioreactor after the suspect measurements have been eliminated. The level of significance is specified by the experimenter while the measurments are assumed to be randomly, normally distributed with zero mean and known variances. Two different approaches of data analysis, batchwise and sequential, that lead to a consistent set of adjustments on the experimental values, are discussed. Several examples based on the fermentation data taken from literature sources are presented to demonstrate the utility of the proposed method, and one set of data is solved numerically to illustrate the computational aspect of the algorithm.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 1292-1301 
    ISSN: 0006-3592
    Keywords: fluorescence monitoring ; biosensor ; NADH monitoring ; inner-filter effect ; monitoring efficiency ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A biosensor model was developed for a commercial NADH fluorescence probe to describe the single-frequency excitation and emission fluorescence behavior of an aqueous mixture of fluorophores. This model is essential in correlating the measured signals to the concentrations of fluorescent compounds in a bioreactor. In addition to the concentrations of fluorescent components, the relevant parameters of the model are the absorbance at both the excitation and the emission frequencies by the solvent and other absorbing species, the background signals, the light path length of the bioreactor vessel, the fluorescence yield, and the lampdetector configuration. Due to inner-filter effects and other interferences, the probe signal is intrinsically nonlinear in both the fluorophore concentration and the path length. An important parameter in the model is the geometric constant, S, which accounts for variations in the monitoring efficiency throughout the sample because fluorescent light is emitted in all directions. Previous models, derived from an unrealistic assumption that fluorescent light is emitted only in one direction parallel to the probe axis, are shown to be seriously deficient. The validity of the model was verified experimentally for a single-component solution in which both the fluorophore concentration and path length were varied.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 806-816 
    ISSN: 0006-3592
    Keywords: air sparging damage ; cell inactivation ; bubble breakup ; cell death rate ; surface vortexing damage ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microbial cells are more readily rendered nonviable by the combined action of air sparging and mechanical agitation than by either action along. A. bubble breakup/coalescence model that incorporates the cell-bubble encounter rate, bubble breakup rate, and death probability is proposed to describe cell inactivation in the presence of bubbles maintained through the joint action of agitation and air, which is continually fed into the impeller stream region via passive vortex entrainment from the surface above or via active sparging from below. Experimental results obtained from a fragile algal (Ochromonas malhamensis) culture are consistent with the model prediction. In particular, the specific cell death rate is linearly related to the specific bubble interfacial surface area. It is shown that cells exhibit sparging-sensitive characteristics when agitation is mild, but become sensitive to surface vortexing when agitation turns vigorous enough to introduce air entrainment. Experimental data obtained from different stirrer sizes are in good agreement with the model © 1992 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...