Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 4493-4504 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Spontaneous fluorescence has been used to measure the coherent femtosecond response of the organic, binary crystal pentacene/p-terphenyl. By using two-pulse excitation with phase-randomized pulses in an interferometric setup and analyzing the variance of the fluctuating intensity of correlated fluorescence photons, femtosecond beatings have been observed. The pattern of these terahertz oscillations is strongly dependent on the detuning frequency range of the exciting pulses, but is rather invariant with regard to the spectral position of the fluorescence probe window. In the interferometric regime of freely propagating pulses novel, ultrafast fluorescence carrier-wave oscillations superimposed to the beat structure have been obtained. The oscillatory signals evolve from a coherent superposition of optical free induction decays, caused by the different electronic transition energies of the pentacene absorber sites O1, O2, O3, and O4, respectively, are monitored as intrinsic, heterodyne beats by the fluorescence square detector. The major part of oscillations is thus considered to result from typical polarization interferences, but vibrational quantum beats are also extractable from the interferogram in the ultimate frequency regime of the pentacene S0→S1ν=1, S0→S1ν=2 resonances. The early picosecond-decay of the fluorescence beats reveals the mechanism of the loss of coherence to be mainly controlled by inhomogeneous dephasing at low phonon temperatures. A model of uncoupled two-level systems that includes Gaussian inhomogeneous broadening of the individual absorber sites and a Gaussian frequency distribution for the excitation pulses can account for the experimental data, quite adequately. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 5060-5069 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The principle of coherence observation by interference noise [COIN, Kinrot et al., Phys. Rev. Lett. 75, 3822 (1995)] has been applied as a new approach to measuring wavepacket motion. In the COIN experiment pairs of phase-randomized femtosecond pulses with relative delay time τ prepare interference fluctuations in the excited state population, so the correlated noise of fluorescence intensity—the variance varF(τ)—directly mimics the dynamics of the propagating wavepacket. The scheme is demonstrated by measuring the vibrational coherence of wavepacket motion in the B-state of gaseous iodine. The COIN interferograms obtained recover propagation, recurrences and spreading as the typical signature of wavepackets. The COIN measurements were performed with precisely tuned excitation pulses which cover the bound part of the B-state surface up to the dissociative limit. In combination with preliminary numerical calculations, comparison has been made with results from previous phase-locked wavepacket interferometry and pump-probe experiments, and conclusions drawn about the limitations of the method and its applicability to quantum dynamical research. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 9901-9910 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The method of coherence observation by interference noise (COIN) [Kinrot et al., Phys. Rev. Lett. 75, 3822 (1995)] has been shown to be a useful tool for measurements of wave packet motion at the quantum-classical border. We present the first systematic interferometric study of fractional vibrational revivals in the B state of thermal iodine (I2) vapor. Experimental COIN interferograms ranging from 200 fs to 40 ps are presented for various excitation wavelengths. The complex temporal structure of the observed fluorescence includes rapid initial damping in the short-time regime and the appearance of quarter- and half-revivals on the quantum-mechanical long-time scale. These features arise from a delicate balance between rotational and vibrational molecular coherences. The clear observation of the wave packets on the long time scale is possible due to the long-time stability of the COIN interferometer. Lowest-order perturbative solutions nicely recover the experimental results, and closed-form analytical expressions based upon the factorization approach and the Poisson summation give insights into the nature of dephasing and rephasing of vibrational wave packets subject to rotational inhomogeneous broadening. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...