Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 5878-5886 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The primary quantum yields of OH(X 2Π),H(2S), and oxygen atoms [O(1D)+O(3P)] produced in the photodissociation of H2O2 at 193 and 222 nm have been measured at 298 K. At 193 nm, the primary quantum yields were observed to be 1.51±0.18, 0.16±0.04, and 〈0.02, for Φ(OH), Φ(H), and the sum of Φ(O) and Φ(O 1S), respectively. At 222 nm, the OH yield was Φ(OH)=2.02±0.35, the H atom yield was Φ(H)=0.024±0.012, and Φ(O) was 〈0.002. The errors quoted above are 2σ, precision plus estimated systematic errors. The OH product was directly monitored by pulsed laser-induced fluorescence, and the atomic species were detected via cw resonance fluorescence. The OH quantum yields reported here were measured relative to known product quantum yields in the dissocation of H2O2 at 248 nm. H(2S) yields were measured relative to those in photolysis of HBr and HCl, (at 193 nm) or CH3SH (at 222 nm), whereas O atoms yields were measured relative to O3 photolysis at both wavelengths. The present results indicate unit dissociation of H2O2 at both 222 and 193 nm with only two major products OH (∼80% at 193 nm, 98% at 222 nm) and H(2S) (∼20% at 193 nm, 2% at 222 nm). Up to 15% of the OH produced in the 193 nm photolysis may be vibrationally excited; however, no evidence for vibrationally excited OH was observed at 222 nm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 24 (1992), S. 973-982 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constants for the reaction H + HBr → H2 + Br were measured between 217 and 383 K using pulsed laser photolysis of HBr and cw resonance fluorescence detection of H(2S). The temporal profiles of the product Br atoms were also monitored to obtain the rate constant at 298 K. The yield of Br from the reaction was determined to be unity. The rate coefficient as a function of temperature is given by the Arrhenius expression, k 1 = (2.96 ± 0.44) × 10-11 exp(-(460 ± 40)/T) cm3 molecule-1 s-1. The quoted errors are at the 95% confidence level and include estimated systematic errors. Our results are compared with those from previous direct measurements. © John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 25 (1993), S. 833-844 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate coefficients for the removal of Cl atoms by reaction with three HCFCs, CF3CHCl2 (HCFC-123), CF3CHFCl (HCFC-124), and CH3CFCl2 (HCFC 141b), were measured as a function of temperature between 276 and 397 K. CH3CF2Cl (HCFC-142b) was studied only at 298 K. The Arrhenius expressions obtained are: k1 = (3.94 ± 0.84)× 10-12 exp[-(1740 ± 100)/T] cm3 molecule-1 s-1 for CF3CHCl2 (HCFC 123); k2 = (1.16 ± 0.41) × 10-12 exp[-(1800 ± 150)/T] cm3 molecule-1 s-1 for CF3CHFCl (HCFC 124); and k3 = (1.6 ± 1.1) × 10-12 exp[-(1800 ± 500)/T] cm3 molecule-1 s-1 for CH3CFCl2 (HCFC 141b). In case of HCFC 141b, non-Arrhenius behavior was observed at temperatures above ca. 350 K and is attributed to the thermal decomposition of CH2CFCl2 product into Cl + CH2CFCl. In case of HCFC-142b, only an upper limit for the 298 K value of the rate coefficient was obtained. The atmospheric significance of these results are discussed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...