Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 51 (1992), S. 415-418 
    ISSN: 1432-0827
    Keywords: Osteoporosis ; Calcaneus ; Ultrasonic measurement ; Density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Broadband ultrasound attenuation (BUA) of the calcaneus predicts axial density in women and is decreased in women who sustain hip fractures. To determine the relationship between ultrasonic and densitometric assessments of bone mass at the same site, BUA and velocity of sound (VOS) were correlated with bone density as measured by dual energy x-ray absorptiometry (DXA) at the calcaneus in 64 Caucasian women aged 35–83 years. BUA, VOS, and bone density in these women decreased annually as a function of age by 1.0%, 0.3%, and 0.9%, respectively. Holding age, years since menopause, height and weight constant, BUA correlated with VOS (r=0.74, P〈0.001), and calcaneal density correlated with BUA (r=0.73, P〈0.001) and with VOS (r=0.66, P〈0.01). The results indicate that both BUA and VOS measurements reflect density at the calcaneus, but suggest that they measure properties of bone other than density and different from each other. The assessment of these additional properties may be useful in the prediction of fracture risk.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Keywords: Diabetes mellitus ; Osteocalcin ; Osteoblast number ; Osteoporosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract The accumulated data indicate that bone mineral density (BMD) is decreased in humans with insulin-dependent diabetes mellitus. The purpose of this study was to prospectively determine sequential lumbar and femoral BMD utilizing dual energy X-ray absorptiometry in rats that spontaneously become diabetic to determine if weight and blood glucose control would prevent the diabetes-related bone mass changes. BMD of the lumbar spine and femur was measured prior to the onset of diabetes and at 3-week intervals after the diagnosis of diabetes for 12 weeks in 14 diabetes-prone BB/Wor rats (DP) and eight diabetes-resistant BB/Wor control rats (DR). At 12 weeks, the lumbar (0.238±0.013 vs 0.262±0.007 g/cm2, P〈0.001) and femoral (0.313±0.013 vs 0.343±0.013 g/cm2, P〈0.001) BMD were significantly lower in the DP rats despite significantly greater body weights (387±26 vs 329±46 g, P〈0.001) and plasma glucose levels of only 178 mg/dl. There was no difference in plasma values of calcium, phosphorus, osteocalcin, or tartrate-resistant acid phosphatase between groups or differences in osteoblast numbers in histologic sections. There was a significant (P〈0.001) decrease in plasma creatinine in the diabetic animals. The results indicate that in this animal model of type I diabetes, spine and femoral BMD do not increase comparable to control despite weight and blood glucose control. This would suggest that the diabetic condition itself affects bone mass in the absence of weight loss and poor blood glucose control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 330-336 
    ISSN: 0730-2312
    Keywords: gallium nitrate ; bone mineral density ; osteocalcin ; collagen ; tartrate-resistant acid phosphatase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Gallium nitrate (GN) is an inhibitor of bone resorption and thereby may result in a change in coupled bone formation. In the present investigation the effects of GN on bone formation were studied in the rat osteosarcoma (ROS) 17/2.8 cell line and normal diploid rat osteoblasts (ROB) in vitro and the femur of rats treated in vivo, measuring mRNA levels for two osteoblast parameters, type I collagen, a marker of matrix formation, and osteocalcin, a bone specific protein and also histone H4, a marker of cell proliferation. GN, at 50 μM for 3 h, increased type I collagen mRNA levels by 132% in ROS 17/2.8 cells and by 122% in proliferating ROB cells. Osteocalcin (OC) mRNA levels were decreased by 61% in ROS 17/2.8 cells and by 97% in differentiated ROB cells. These changes occurred in the absence of any effects on cell proliferation. Seventy-day-old female rats were then treated with GN, 0.5 mg/kg/day, for 3 weeks. As previously reported, GN decreased serum calcium levels, but had no effect on lumbar or femoral bone density. In contrast to the in vitro effects, GN had no effect on type I collagen steady-state mRNA levels in the femur; however, it decreased OC steady-state mRNA levels in the femur by 58%. These results suggest that GN has similar in vitro effects in transformed and normal osteoblasts, while the collagen-stimulatory effects observed in vitro cannot be extrapolated to in vivo models. The consistent inhibition of osteocalcin in vitro and in vivo suggests a more specific target for GN that may relate to its effects in inhibiting bone resorption in normal rats.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...