Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A pressure collar, assembled around 25cm sections of 4-year-old willow twigs, was used to examine cavitation events under field conditions. When the air pressure inside the collar was raised to between 1–8 and 2–8MPa, ultrasound acoustic emission signals were triggered which indicated the breaking of water columns in the xylem. The hydraulic conductivity of the twig portion inside the chamber decreased markedly. As a result, water potentials and conductances in leaves at the end of the twig decreased. Similar changes were induced at comparable pressures in detached twigs. The equipment used is described in detail, and evidence is presented that the mechanism of this artificial production of emboli follows the air-seeding principle hypothesized for natural cavitation events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: calcium ; deficiency ; magnesium ; needles ; nutrition ; nutrient mobilisation ; potassium ; seasonal dynamics ; soil solution ; soil water ; spruce ; xylem sap
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil solution, xylem sap and needles of mature trees were sampled in three spruce stands over one vegetation period and analysed for major cations. Investigations of nutrient distribution between these three pools and evaluations of seasonal dynamics give the following results: The highest nutrient concentrations in the xylem sap occur at the time of bud break and become gradually lower during the vegetation period. The trees show similar trends of xylem sap concentrations with time for potassium, calcium and magnesium regardless of the nutritional status of the plots. No coupling of xylem sap to soil solution composition can be observed in spite of a high variability of soil solution chemistry in time. The major cations in the current needles exhibit a significantly different trend with time. No time-based correlations for nutrient contents could be found for the needles from the previous year. Despite mobilisation of storage pools in the deficient stand, trees are not able to increase the Ca and Mg contents in the needles up to the level of the other stands. Potassium could be retranslocated in sufficient extent for nutrition of current needles. Due to seasonal variability and dependence upon internal processes, such as retranslocation and mobilisation of nutrients, xylem sap does not seem to be a good tool for the estimation of the nutritional status of forest sites. It was concluded that only minor transport into new foliage via xylem sap will proceed after nutrient flush during the bud break and the nutrient content in the new biomass will be governed by dilution due to biomass growth or by nutrient transport by other means than xylem sap.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...