Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 413 (1989), S. 505-510 
    ISSN: 1432-2013
    Keywords: Exocrine ; Salivary ; Cell line ; Calcium ; Muscarinic ; Duct cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have studied receptor-mediated Ca2+ mobilization in an established exocrine epithelial cell line (HSG-PA) derived from a human submandibular gland. These cells possess a single class of high-affinity muscarinic cholinergic receptors identified using [3H]-quinuclidinylbezilate (K d=0.17±0.07 nmol/l;B max=37±2 fmol/mg protein;n=3). The muscarinic agonist carbachol elicits a concentration dependent increase of [3H]-inositol trisphosphate in HSG-PA cells (100 μmol/l; 〉2 fold by 30 s). Carbachol also results in a rapid, ∼5-fold increase in cytosolic [Ca2+]. This response is made up of two components, one arising from the release of intracellular Ca2+ (La3+ insensitive; independent of extracellular [Ca2+]), the other from the entry of extracellular Ca2+ (La3+ sensitive; dependent on extracellular [Ca2+]). These Ca2+ mobilizing mechanisms are completely blocked by the muscarinic antagonist atropine (10 μmol/l) but unaffected by several voltage-dependent Ca2+ channel antagonists (verapamil, nifedipine, diltiazem) and by membrane depolarization (incubation in 55 mmol/l KCl). These results demonstrate that HSG-PA cells respond to muscarinic stimulation by mobilizing Ca2+ from an intracellular store and via a receptor-operated Ca2+ entry pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 527-535 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Rat submandibular cells treated with methylcholanthrene are able to be propagated in continuous culture while retaining β-adrenergic responsiveness. A specific clone, RSMT-A5, has been isolated and studied in detail. RSMT-A5 cells possess β-adrnergic receptors (BARS) as judged by [3H]-dihydroalprenolol ([3H]-DHA) binding studies. [3H]-DHA binds to RSMT-A5 membranes in a specific and saturable manner with respect to time and [3H]-DHA concentration. Specific binding is saturable within three min of incubation, and a Scatchard analysis reveals a single class of high affinity binding sites with an equilibrium dissociation constant of 0.62 ± 0.03 nM and a receptor density of 101 ± 4 fmole/mg protein. Antagonist competition studies indicate that the BARs are primarily of the β2-subtype. The BARs are functional since isoproterenol stimulation results in an increased intracellular cAMP content, marked morphological change, and decreased cell volume and chloride content. These same responses can be evoked by treating RSMT-A5 cells with 8-bromo-cAMP. Ion transport inhibitors such as bumetanide (an inhibitor of Na/K/C1 cotransport), SITS and DIDS (inhibitors of chloride-bicarbonate exchange), amiloride (an inhibitor of Na-H exchange), ouabain (an inhibitor of Na/K-ATPase), and dipyridamole and 9-anthracene carboxylic acid (chloride channel blockers) fail to inhibit the isoproterenol-stimulated change in chloride content. The effects of either isopro-terenol or 8-bromo-cAMP on both chloride content and cell volume can be inhibited by the chloride channel blocker N-phenylanthranilic acid, however. Taken together, our results indicate that RSMT-A5 cells possess a β-adrenergic receptor system which controls intracellular volume and chloride content by modulating transport processes that are 1) cAMP-responsive and 2) inhibitable by the putative chloride channel blocker N-phenylanthranilic acid.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 27-39 
    ISSN: 0730-2312
    Keywords: ricin ; transferrin ; monensin ; bafilomycin A1 ; chloroquine ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Ricin, a plant toxin that binds to galactose-terminated glycoproteins and glycolipids on the cell surface, is internalized into endosomes before reaching the cytosol where it exerts its toxic activity. Fusion of early endosomes containing ricin or transferrin was demonstrated by using postnuclear supernatant fractions from K-562 cells. For both ligands, fusion depended on time, temperature, and ATP and was blocked by preincubation with N-ethylmaleimide. Some reagents that increase endosomal pH, the ionophores monensin and nigericin and the weak base chloroquine, stimulated the rate of fusion. However, bafilomycin A1, a specific inhibitor of vacuolar H+-ATPases, did not alter the rate of fusion. Moreover, it reduced or eliminated stimulation caused by monensin, nigericin, or chloroquine. Thus, the increased rate of fusion did not correlate with the higher lumenal pH of the endosome. The results suggest instead that fusion was stimulated by reagents that promoted accumulation of cations within the vesicles. © 1996 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 159 (1994), S. 495-505 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Ricin (RIC), modeccin (MOD), Pseudomonas exotoxin A (PE), and diphtheria toxin (DT) are protein toxins that enter cells by receptor-mediated endocytosis. After intracellular transport and membrane translocation to the cytosol, these toxins inhibit protein synthesis by enzymatically removing a specific adenine residue from ribosomal RNA (RIC, MOD), or by ADP-ribosylation of elongation factor-2 (PE, DT). Recently, Thompson and Pace (1992) reported that AZT (3′-azido-3′-deoxythymidine) inhibited RIC toxicity in Vero cells, and this inhibition was not due to a block of RIC enzymatic activity. This paper extends these findings and examines the effects of AZT treatment on the toxicities of other protein toxins in Chinese hamster ovary (CHO) and Vero cell lines. AZT treatment did not significantly alter the toxicity of DT or MOD in either cell line, but it markedly reduced RIC and PE toxicity in both cell lines. The ID50 values (concentration of toxin required to inhibit protein synthesis by 50%) for RIC and PE in CHO cells increased approximately 6.5- and 12.5-fold, respectively; while in Vero cells the ID50 values increased ca. 8.5-and 4.5-fold, respectively. Results of further studies revealed differences in the mechanisms by which AZT inhibited RIC and PE toxicity. Results of cell-free translation indicated that, unlike its effects on RIC, AZT blocked the ability of PE to perform its enzymatic activity. As AZT did not block RIC enzymatic activity, we examined the effects of AZT on earlier steps in the RIC intoxication process. AZT treatment did not inhibit cell-surface binding or internalization of [125I]-RIC. Results of kinetic studies showed that when AZT was incubated with cells at the time of RIC exposure, it caused no major change in the lag phase, during which RIC reaches the site of translocation. However, it clearly reduced the subsequent first-order reduction in the rate of protein synthesis, suggesting an effect on translocation. Monensin (an ionophore that perturbs intracellular trafficking and increases the toxicities of RIC and PE) reduced AZT protection against both toxins. Nocodazole and colchicine (agents that disrupt microtubules and some routes of intracellular trafficking) reduced the ability of AZT to inhibit RIC, but not PE, toxicity. In summary, our results suggest that (1) AZT acts within the cytosol to inhibit (directly or indirectly) the enzymatic action of PE, and (2) the AZT inhibition of RIC cytotoxicity does not involve perturbations of RIC cell-surface binding, internalization, or enzymatic activity but might result from an alteration in RIC translocation. © 1994 wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...