Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 341 (1990), S. 510-516 
    ISSN: 1432-1912
    Keywords: Myenteric plexus ; Rat ; [3H]Acetylcholine release ; Muscarinic autoinhibition ; Reverse phase HPLC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Myenteric plexus-longitudinal muscle strips isolated from the small intestine of rats were incubated with [3H]choline to measure the synthesis and the release of [3H]acetylcholine. To separate different radioactive compounds (acetylcholine, choline, phosphorylcholine) from both the tissue and the overflow a new method, the reverse phase HPLC, was used. The radiochromatogram following the injection of a [3H]choline-standard and a [14C]acetylcholine-standard onto the HPLC showed a clear separation of both isotopes with a recovery rate of roughly 100%. Incubation of the muscle strips with [3H]choline caused the synthesis of [3H]acetylcholine (30,000 dpm/preparation) that increased 2-fold, when the electrical field stimulation during labelling was increased from 0.2 Hz to 1 Hz. Electrical field stimulation (3 Hz, 2 min) caused an increase in tritium efflux that was abolished by the removal of extracellular calcium or by the addition of tetrodotoxin. Analysis by reverse phase HPLC of the overflow showed that the stimulated increase in tritium overflow was balanced by the enhanced release of [3H]acetylcholine, whereas the overflow of [3H]choline was not affected by the electrical field stimulation. Oxotremorine (1 μmol/l) suppressed the release of [3H]acetylcholine by 60%. Scopolamine (0.1 μmol/l) prevented this inhibition and, given alone, enhanced the release of [3H]acetylcholine by 43%. The release of [3H]acetylcholine evoked at 0.2, 2 or 20 Hz did not consistently decline at increasing frequencies. The present experiments show the synthesis and the calcium-dependent release of [3H]acetylcholine from the myenteric plexus-longitudinal muscle preparation of rats correspondingly to the same in-vitro preparation isolated from guinea-pigs. Muscarinic autoinhibition operates also in the small intestine of rats. However, some differences (frequency-dependency of [3H]acetylcholine release, spontaneous neuronal activity) are evident between both species. Reverse phase HPLC is a useful method to separate radioactive choline and acetylcholine with a high recovery rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: [3H]Acetylcholine release ; Neocortex ; Myenteric plexus ; Phrenic nerve ; Calcium channel antagonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Electrically-evoked release of [3H]acetylcholine from autonomic neurons (myenteric plexus), motoneurons (phrenic nerve) and the central nevous system (neocortex) was investigated in the presence and absence of the calcium channel antagonists ω-conotoxin GVIA, nifedipine and verapamil, whereby the same species (rat) was used in all experiments. Release of [3H]acetylcholine was measured after incubation of the tissue with [3H]choline. ω-Conotoxin GVIA markedly reduced (70%) the evoked release of [3H]acetylcholine from the myenteric plexus of the small intestine (IC50: 0.7 nmol/l) with a similar potency at 3 and 10 Hz stimulation. An increase in the extracellular calcium concentration attenuated the inhibitory effect of ω-conotoxin GVIA. Release of [3H]acetylcholine from the rat neocortex was also inhibited (90%) by ω-conotoxin GVIA, but the potency was 19-fold lower (IC50: 13 nmol/l). However, the release of [3H]acetylcholine from the phrenic nerve was not reduced by ω-conotoxin GVIA (100 nmol/l) at 1.8 mmol/l calcium (normal concentration), whereas ω-conotoxin GVIA inhibited evoked [3H]acetylcholine release by 47% at 0.9 mmol/l calcium. Neither nifedipine (0.1 and 1 μmol/l) nor verapamil (0.1, 1 and 10 μmol/l) modified the evoked release of [3H]acetylcholine from the myenteric plexus and the phrenic nerve. Acetylcholine release from different neurons appears to be regulated by different types of calcium channels. N-type channels play the dominant role in regulating acetylcholine release from both the myenteric plexus and the neocortex, whereas acetylcholine release from motor nerves is regulated by calcium channel(s) not yet characterized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...