Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 3967-3980 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A DNA polymer with thousands of base pairs is modeled as an elastic rod with the capability of treating each base pair independently. Elastic theory is used to develop a model of the double helix which incorporates intrinsic curvature as well as inhomogeneities in the bending, twisting, and stretching along the length of the polymer. Inhomogeneities in the elastic constants can also be dealt with; thus, sequence-dependent structure and deformability can be taken into account. Additionally, external forces have been included in the formalism, and since these forces can contain a repulsive force, DNA self-contact can be explicitly treated. Here the repulsive term takes the form of a modified Debye–Hückel force where screening can be varied to account for the effect of added salt. The supercoiling of a naturally straight, isotropic rod in 0.1M NaCl is investigated and compared with earlier treatments of supercoiled DNA modeled by a line of point charges subject to electrostatic interactions and an elastic potential. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 17926-17935 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 34 (1994), S. 565-597 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A combination of detailed energy minimization and molecular dynamics studies of closed circular DNA offers here new information that may be relevant to the dynamics of short DNA chains and/or low superhelical densities. We find a complex dependence of supercoiled DNA energies and geometries on the linking number difference ΔLk as physiological superhelieal densities (|σ| ∼ 0.06) are approached. The energy minimization results confirm and extend predictions of classical elasticity theory for the equilibria of elastic rods. The molecular dynamics results suggest how these findings may affect the dynamics of super-coiled DNA.The minimization reveals sudden higher order configurational transitions in addition to the well-known catastrophic buckling from the circle to the figure-8. The competition among the bending, twisting, and self-contact forces leads to different families of supercoiled forms. Some of those families begin with configurations of near-zero twist. This offers the intriguing possibility that nicked DNA may relax to low-twist forms other than the circle, as generally assumed. Furthermore, for certain values of ΔLk, more than one interwound DNA minimum exists. The writhing number as a function of ΔLk is discontinuous in some ranges; it exhibits pronounced jumps as ΔLk is increased from zero, and it appears to level a characteristic slope only at higher values of ΔLk. These findings suggest that supercoiled DNA may undergo systematic rapid interconversions between different minima e both close in energy and geometry.Our molecular dynamics simulations reveal such transitional behavior. We observe the macroscopic bending and twisting fluctuations of interwound forms about the global helix axis as well as the end-over-end tumbling of the DNA as a rigid body. The overall mobility related to |σ| and to the bending, twisting, and van der Waals energy fluctuations. The general character of molecular motions is thus determined by the types of energy minima found at a given ΔLk. Different time scales may be attributed to each type of motion: The overall chain folding occurs on a time scale almost an order of magnitude faster than the end-over-end tumbling. The local bending and twisting of individual chain residues occur at an even faster rate, which in turn correspond to several cycles of local variations for each large-scale bending and straightening motion of the DNA. © 1994 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...