Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 435 (1997), S. 267-272 
    ISSN: 1432-2013
    Keywords: Key words K+ channel ; Colon crypt ; Ca2+ regulation ; Cl ; secretion ; ATP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previous studies have indicated that a 16-pS K+ channel (KCca) in the basolateral membrane is responsible for the acetylcholine-induced whole-cell K+ conductance in these cells. In the present study we have examined this channel in excised inside-out patches of the basolateral membrane. Over a wide voltage range this channel showed inward rectification. The Ca2+ sensitivity was very marked, with a Hill coefficient of three and with half-maximal activation at 330 nmol/l. After several minutes most channels showed a slow run-down. Channel activity could be refreshed by addition of ATP (1 mmol/l) to the bath solution. The non-metabolizable derivative 5’-adenylylimidodiphosphate (AMP-PNP) had no such effect. In contrast, it inhibited channel activity by some 50%. ATP and its derivatives had no effect on the Ca2+ sensitivity. Channels activated by ATP were subsequently studied in the presence of alkaline (10 kU/l) or acidic (1 kU/l) phosphatase. Both phosphatases reduced channel activity significantly. These data suggest that the 16-pS K+ channel is directly controlled by cytosolic Ca2+. This regulatory step is probably distal to an activation produced by protein-kinase-C-dependent phosphorylation. As is the case for several other K+ channels, high concentrations of non-metabolizable ATP analogues inhibit this channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words K+ channel ; Nonselective cation channel ; Volume regulation ; Calcium ; Ca2+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  It has previously been shown in studies of a renal epithelial cell line that nonselective cation (NSC) channels are activated by exposure to hypertonic solution. We have also found such channels in excised patches of colonic crypt cells. They require high Ca2+ activities on the cytosolic side and a low ATP concentration for their activation and have not been recorded from cell-attached patches of colonic crypts. We examine here whether this type of channel is activated by hypertonic cell shrinkage. Bath osmolality was increased by addition of 25, 50 or 100 mmol/l mannitol. Cell-attached and whole-cell patch recordings were obtained from rat base and mid-crypt cells. In whole-cell recordings we found that addition of 50 or 100 mmol/l mannitol depolarized these cells significantly from –78±2.0 to –66±3.8 mV (n=22) and from –78±1.3 to –56±2.6 mV (n=61), respectively, and reduced the whole-cell conductance from 20±8.0 to 14±6.6 nS (n=7) and from 20±3.0 to 9.8±1.6 nS (n=19), respectively. In cell-attached patches K+ channels with a single-channel conductance of ≈16 pS were found in most recordings. The activity of these channels (N×P o, N=number, P o=open channel probability) was reduced from 2.08±0.37 to 0.98±0.23 (n=15) by the addition of 50 mmol/l mannitol and from 1.75±0.26 to 0.77±0.20 (n=12) by 100 mmol/l mannitol. No NSC channel activity was apparent in any of these recordings. Previously we have shown that the 16-pS K+ channel is controlled by cytosolic Ca2+ ([Ca2+]i). Therefore we measured [Ca2+]i by the fura-2 method and found that hypertonic solution reduced [Ca2+]i significantly (n=16). These data indicate that exposure of rat colonic crypts to hypertonic solutions does not activate NSC channels; [Ca2+]i falls in hypertonic solution leading to a reduction in the value of K+ channel N×Po, a reduced whole-cell conductance and depolarization of mid-crypt cells. These processes probably assist volume regulation inasmuch as they reduce KCl losses from the cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...