Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The patterns of radioactively labeled proteins from cultured chicken embryo cells stressed in the presence of either D2O or glycerol were analyzed by using one-dimensional polyacrylamide gel electrophoresis. These hyperthermic protectors blocked the induction of stress proteins during a 1-hour heat shock at 44°C. The inhibitory effect of glycerol but not D2O on the induction of heat shock proteins could be overcome by increased temperature. By using transcriptional run-on assays of isolated nuclei and cDNA probes to detect hsp70- and hsp88-specific RNA transcripts, it was shown that the D2O and glycerol blocks occurred at or before transcriptional activation of the hsp70 and hsp88 genes. After heat-stressed cells were returned to 37°C and the protectors were removed, heat shock proteins were inducible by a second heating. This result and the fact that the chemical stressor sodium arsenite induced stress proteins in glycerol medium indicated that the treatments did not irreversibly inhibit the induction pathways and that the stress response could be triggered even in the presence of glycerol by a stressor other than heat. In principle then, cells incurring thermal damage during a 1-hour heat shock at 44°C in D2O or glycerol medium should be competent to respond by inducing heat shock proteins during a subsequent recovery period at 37°C in normal medium. We found that heat shock proteins were not induced in recovering cells, suggesting that glycerol and D2O protected heat-sensitive targets from thermal damage. Evidence that the heat-sensitive target(s) is likely to be a protein(s) is summarized. During heat shocks of up to 3 hours duration, neither D2O nor glycerol significantly altered hsp23 gene activity, a constitutively expressed chicken heat shock gene whose RNA transcripts and protein products are induced by stabilization (increased half-life). During a 2-hour heat shock, glycerol treatment blocked the heat-induced stabilization of hsp23 RNA and proteins; however, D2O treatment only blocked RNA transcript stabilization, effectively uncoupling the hsp23 protein stabilization pathway from hsp23 RNA stabilization and transcriptional activation of hsp70 and hsp88 genes.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 122 (1985), S. 205-209 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: It has been reported that chicken embryo cells deprived of exogenous amino acids for 4 hours synthesize stress (heat-shock) proteins. Herein, we show that amino acid deprivation is not sufficient to cause induction of stress proteins. Zinc contaminating a component of commercial cell culture medium used to prepare amino acid-free medium was an inducer in our cultures. In the absence of exogenous amino acids, the concentration of zinc ions needed for half-maximal induction of stress proteins was an order of magnitude lower than the dose required for cells in complete medium. Histidine and cystine, which have high affinities for zinc ions, were the amino acids most effective in blocking the induction of stress proteins by zinc. Problems posed by heavy metal ions in culture media and biologic fluids for searches for in vivo inducers of the cellular stress (heat shock) response are discussed.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 125 (1985), S. 251-258 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Glucose-regulated and heat shock proteins are two subsets of eukaryotic stress proteins that can be induced differentially, simultaneously, and reciprocally. Two new inducers, low extracellular pH and 2-mercaptoethanol, that stimulate chicken embryo cells to synthesize glucose-regulated proteins rapidly were found. Two classes of cellular targets for mercaptoethanol were defined operationally, one dependent on and the other independent of protein synthesis. A new inducer of heat shock proteins, high extracellular pH, was found as well. Inductions by low and high extracellular pH were inhibited by actinomycin D but were insensitive to cycloheximide. Inductions of glucose-regulated and heat shock proteins are discussed in terms of changes in intracellular pH and sulfhydryl oxidation states.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...