Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 1288-1290 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The insertion of thin interlayers of LiF under the negative metal electrode (Al and Au) of bulk heterojunction solar cells significantly enhances the fill factor and stabilizes high open circuit voltages. Compared to devices without the LiF interfacial layer, the white light efficiencies increase by over 20% up to ηeff∼3.3%. Substitution of the LiF by another insulating interlayer SiOx results in lower overall efficiencies. In the case of a LiF/Au electrode, substantial efficiency enhancement is observed compared to a pristine Au electrode and white light efficiencies up to ηeff∼2.3% are reported.© 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 7235-7244 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Regioregular poly(3-(4′-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv–visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61–butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...