Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Postural reflexes ; Unexpected postural perturbations ; Electromyographic activity ; Hindlimb muscles ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Cats respond to drop of the support from beneath a single limb with the “diagonal stance response” (Coulmance et al. 1979). They load the limbs on the diagonal opposite to the one containing the dropped limb and unload the third supporting limb in the diagonal containing the dropped limb. Characteristic biomechanical delays in limb motion and in vertical force changes imposed upon the limbs are observed. These delays range from 30 to 45 ms, depending upon the location of the dropped limb. This study describes the kinematics of the “diagonal stance response” and the activation of selected agonist-antagonist muscle pairs acting on the joints of the hindlimb during the response. Proximal and distal hindlimb muscles respond to perturbations in groups that are appropriate to the vertical forces imposed upon the limb. When the hindlimb containing the recording electrodes is loaded by drop of the contralateral hindlimb or the ipsilateral forelimb medium latency (25–45 ms) EMG responses occur in the extensors. This response serves to stiffen the limb against the increased vertical force of loading. A similar response is observed when the hindlimb is reloaded after being dropped. In this case, however, short latency responses precede the medium latency responses in muscles that are passively stretched by the limb drop. When drop of the diagonal forelimb unloads the hindlimb containing the electrodes, medium latency responses are observed in the distal hindlimb flexors, which indicates that the unloading is evoked in part by active lifting of the limb. In most cases, the medium latency responses precede or are coincident with the changes in force imposed on the limb, suggesting that the observed responses are centrally programmed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Postural reflexes ; Unexpected postural perturbations ; Electromyographic activity ; Muscle synergies ; Motor control ; Hindlimb muscles ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effect of the direction of unexpected horizontal perturbations of stance on the organization of automatic postural responses was studied in cats. We recorded EMG activity in eight proximal and distal muscles of the hindlimb along with vertical forces imposed by the limbs in awake behaving cats while they stood on an hydraulic platform. Postural responses to motion of the platform in 16 different horizontal directions were recorded. Vertical force changes were consistent with passive shifts of the center of mass and active correction of stance by the animals. When the perturbation was in the sagittal plane, vertical force changes began about 65 ms following initial platform movement. When the perturbation contained a component in the lateral direction, latency for vertical force changes was about 25 ms and an inflection in the vertical force trace was observed at 65 ms. No EMG responses were observed with latencies that were short enough to account for the early force component and it was concluded that this force change was due to passive shifts of the center of mass. The amplitude of the EMG responses of each muscle recorded varied systematically as perturbation direction changed. The directions for which an individual muscle showed measurable EMG activity were termed the muscle's “angular range of activation.” No angular range of activation was oriented strictly in the A-P or lateral directions. Most muscles displayed angular ranges of activation that encompassed a range of less than 180°. Onset latencies of EMG responses also varied systematically with perturbation direction. The amplitude and latency relationships between muscles, which made up the organization of postural responses, also varied systematically as perturbation direction was changed. This result suggests that direction of perturbation determines organizational makeup of postural responses, and for displacements in the horizontal plane, is considered a continuous variable by the nervous system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Postural reflexes ; Unexpected postural perturbations ; Electromyographic activity ; Motor control ; Hindlimb muscles ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The active components of the quadrupedal diagonal stance response to rapid removal of the support from beneath a single limb were studied in cats to further define the mechanisms that trigger and generate the response. We recorded EMG activity from lateral gastrocnemius and tibialis anterior muscles in awake, behaving cats while they stood on an hydraulic posture platform. By dropping the support from beneath a single limb, we evoked the diagonal stance response, with its characteristic changes in vertical force and EMG patterns. As the animal responded to this drop, a second perturbation of posture was then presented at intervals of 10 to 100 ms following the first. This second perturbation, which consisted of dropping the support from beneath the two limbs that were loaded as a result of the initial limb drop, made the first response biomechanically inappropriate. The EMG responses observed in both muscles during paired perturbations were triggered by the somatosensory events related to the perturbations. Muscle responses that were appropriate for the first perturbation always occurred with amplitudes and latencies similar to control trials. This was true even when the second perturbation occurred 10–20 ms after the first, that is, when this perturbation either preceded or was coincident with the response to the initial limb drop. The EMG responses that were normally associated with the second perturbation were delayed and/or reduced in amplitude when the time interval between perturbations was short. As the inter-perturbation interval was lengthened beyond 60–100 ms, however, EMG responses to the second perturbation were unaffected by the occurrence of the first perturbation. When the hindlimb containing the recording electrodes was dropped as part of the second perturbation, a myotatic latency response was observed in tibialis anterior. The amplitude of this response to the second perturbation was greater than controls when this displacement was presented during the period between initiation of the first perturbation and execution of the response to it. When the second displacement was presented after execution of the first response began, the amplitude of the myotatic response was reduced below control levels. While the results do not preclude the possibility that these “automatic” postural responses are segmental or suprasegmental reflexes, they support the hypothesis that the active component of the response to drop of the support beneath a single limb is centrally programmed and that the appropriate response can be riggered very rapidly by the somatosensory information signalling the perturbation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Unexpected postural perturbations ; Electromyographic activity ; Muscle synergies ; Motor control ; Human ; Automatic postural responses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effect of the direction of unexpected horizontal perturbations of stance on the organization of automatic postural responses was studied in human subjects. We recorded EMG activity from eight proximal and distal muscles acting on joints of the legs and hip known to be involved in postural corrections, while subjects stood on an hydraulic platform. Postural responses to horizontal motion of the platform in 16 different directions were recorded. The amplitude of the EMG responses of each muscle studied varied continuously as perturbation direction was changed. The directions for which an individual muscle showed measurable EMG activity were termed the muscle's “angular range of activation”. There were several differences in the response characteristics of the proximo-axial muscles as opposed to the distal ones. Angular ranges of activity of the distal muscles were unipolar and encompassed a range of less than 180°. These muscles responded with relatively constant onset latencies when they were active. Proximo-axial muscles, acting on the upper leg and hip showed larger angular ranges of activation with bimodal amplitude distributions and/ or onset latency shifts as perturbation direction changed. While there were indications of constant temporal relationships between muscles involved in responses to perturbations around the sagittal plane, the onset latency relationships for other directions and the response amplitude relationships for all directions varied continuously as perturbation direction was changed. Responses were discrete in that for any particular perturbation direction there appeared to be a single unique response. Thus, while the present results do not refute the hypothesis that automatic postural responses may be composed of mixtures of a few elemental synergies, they suggest that composition of postural responses is a complex process that includes perturbation direction as a continuous variable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...