Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 39 (1994), S. 56-61 
    ISSN: 1040-452X
    Schlagwort(e): Receptor binding ; Growth factor ; Wild-type transfectants ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie
    Notizen: We reported previously that the mitogenic activities of FGF-1 (acidic FGF) could be dissociated from its receptor-binding activities by site-directed mutagenesis of lysine 132 to a glutamic acid. Although the mutant FGF-1 protein binds to the high-affinity tyrosinekinase receptors, stimulates tyrosine-kinase activity, and promotes expression of immediate-early genes, it is not mitogenic for a variety of tested cell lines. Interestingly, the mutant FGF-1 is capable of other functions associated with the wild-type protein such as promotion of mesoderm formation in Xenopus animal caps. The mutant exhibits a reduced apparent affinity for heparin-Sepharose compared to the wild-type protein. The relationship between the reduced heparin affinity and lack of mitogenic activity of this mutant is not clear. Recent data indicates the relationship is not as simple as reduced stability of the protein. When NIH 3T3 cells are transfected with expression vectors encoding either wild-type or mutant FGF-1, a transformed phenotype can be seen in cells overexpressing the wild-type FGF-1, whereas cells overexpressing mutant FGF-1 appear normal. Analysis of lysates of these cells indicates that a tyrosine-kinase cascade, distinct from that associated with the high-affinity cell surface receptors, has been activated in the wild-type transfected cells but not in the mutant transfected cells. Although both transfected cell lines contain FGF-1 cell surface receptors as judged by crosslinking studies, the wild-type transfects are refractory to exogenous FGF-1, whereas the mutant transfectants respond normally. Together these results support an intracellular role of wild-type FGF-1 in mediating certain of its functions. In addition, they demonstrate that certain functions of the growth factor can be dissociated at the structural level. Additional mutagenesis studies have resulted in the identification of mutants with heparin-binding or mitogenic deficiencies that do not correlate as well as those of the 132 mutant. It appears that the inactivity of the lysine 132 mutant is related, in part, to cysteine 131. © 1994 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 147 (1991), S. 121-127 
    ISSN: 0021-9541
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Platelet-derived growth factor (PDGF) is mitogenic and chemotactic for vascular smooth muscle cells cultured in vitro, and, thus, may play a role in the smooth muscle cell proliferation and migration that occurs during atherosclerotic lesion development. Two related PDCF polypeptides, designated as the A and B chains, form functionally active PDGF-AA, AB, or BB dinners. The PDGF A- and B-chain genes are both transcribed in human umbilical vein endothelial (HUVE) cells and their expression is regulated by cytokines, growth factors, endotoxin, and phorbol ester. We reported previously that the angiogenic polypeptide heparin-binding growth factor (HBGF)-I induces PDGF A-chain gene expression, but does not affect PDGF B-chain gene expression. In this study, we determined whether mRNA stabilization contributed to this induction by measuring the half-life of PDGF A-chain mRNA in quiescent, HBGF-1-stimulated, and proliferating HUVE cells. PDGF A-chain mRNA levels increase when quiescent HUVE cells are treated with the protein synthesis inhibitor cycloheximide; therefore, the effect of cycloheximide on PDGF A-chain mRNA decay was also investigated. The half-life of PDGF A-chain transcripts in quiescent cells was ∼2.4 h and neither HBGF-1 nor cycloheximide significantly altered this decay rate. We also estimated the half-life of PDGF B-chain mRNA under the three different growth conditions and in the absence or presence of cycloheximide. The half-life in quiescent cells was ∼1.8 h and was unaffected by HBGF-1 or protein synthesis inhibition. Therefore, the PDGF mRNAs have similar decay rates in HUVE cells, even though the 3′ untranslated region of B-chain transcripts, but not A-chain transcripts, contains AU-rich sequence motifs postulated to confer rapid turnover in vivo.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 144 (1990), S. 313-325 
    ISSN: 0021-9541
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The study of human genetic disorders known as premature aging syndromes may provide insight into the mechanisms of cellular senescence. These diseases are clinically characterized by the premature onset and accelerated progression of numerous features normally associated with human aging. Previous studies have indicated that fibroblasts derived from premature aging syndrome patients have in vitro growth properties similar to senescent fibroblasts from normal individuals. As an initial approach to determine whether gene expression is altered in premature aging syndrome fibroblasts, RNA was prepared from various cell strains and used for gel blot hybridization experiments. Although normal fibroblasts only express platelet-derived growth factor (PDGF) A-chain mRNA for a brief period following mitogenic stimulation, one strain of Hutchinson-Gilford (progeria) syndrome fibroblasts, AG3513, consdtutively expresses PDGF A-chain mRNA and PDGF-AA homodimers. The PDGF A-chain gene does not appear to be amplified or rearranged in these fibroblasts. AG3513 progeria fibroblasts have properties characteristic of senescent cells, including an altered morphology and a diminished mitogenic response to growth promoters. The diminished response of AG3513 progeria fibroblasts to PDGF stimulation was examined in some detail. Studies using 125I-PDGF-BB, which binds with high affinity to both A- and B-type PDGF receptors, indicate that normal and AG3513 progeria fibroblasts have a similar number of PDGF receptors. Although receptor autophosphorylation occurs normally in PDGF-stimulated AG3513 progeria fibroblasts, c-fos mRNA induction does not. The senescent phenotype of AG3513 fibroblasts is probably unrelated to their constitutive PDGF A-chain gene expression; further studies are necessary in order to directly address this issue. Also, additional analysis of this progeria fibroblast strain may provide information on the control of mitogeninducible gene expression in normal cells.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 45 (1991), S. 131-138 
    ISSN: 0730-2312
    Schlagwort(e): proto-oncogene expression ; nuclear translocation ; mitogenesis ; tyrosine kinase ; angiogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The heparin-binding or fibroblast growth factors (HBGFs) modulate cell growth and migration, angiogenesis, wound repair, neurite extension, and mesoderm induction. Relatively little is known regarding the precise mechanism of action of these growth factors or the structural basis for their action. A better understanding of the structural basis for the different activities of these proteins should lead to the development of agonists and antagonists of specific HBGF-1 can be dissociated from the receptor-binding activities of the growth factor by site-directed mutagenesis of a single lysine residue. Thus, the mutant HBGF-1 has normal receptor-binding activity and is capable of stimulating tyrosine kinase activity and proto-oncogene expression but is not able to elicit a mitogenic response. A similar dissociation of early events such as proto-oncogene expression from the mitogenic response is observed when the human wild-type HBGF-1 is used in the absence of added heparin. These results indicate that intracellular sites of action by the growth factor may be required to complete the mitogenic response. Further evidence for this idea is provided by transfection experiments where NIH 3T3 cells are engineered to produce large quantities of wild-type or mutant HBGF-1. Production of wild-type induces a transformed phenotype, whereas over-production of the mutant does not. The majority of both forms of the protein is found in the nuclear fraction of the transfected cells. Additional site-directed mutagenesis of putative nuclear translocation sequences in the wild-type protein do not affect mitogenic activity. Thus, the role of nuclear translocation in the mechanisms of action of HBGF-1 remains unclear.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...