Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The blue light-elicited monovalent anion-dependent alkalinization of the medium of Monoraphidium braunü (Legnerová, 202–7d) was characterized for the NO-3 and Cl- uptake. The maximal H+ uptake rates for these two anions have a similar optimum pH around 8.5, and quite similar Ks values for high (38 üM for Cl- and 35üM for NO-3) and low (320 üM for Cl- and 335 üM for NO-3) affinities. The steady H+ uptake associated with the uptake and reduction of NO-3 showed a Ks of 125 üM. which in this alga corresponds to the NO-3 reductase (EC 1.6.6.2) Km for NO-3. The only and striking difference found in the uptake properties of these anions was the delay time between the switching on of the blue light and the start of the alkalinization, which increased from 10 to 90 s as the initial pH decreased from 8.5 to 6.5 in the presence of NO-3, whereas for Cl- uptake this delay time (10s) did not vary in relation to the initial pH. When the NO-3 concentration in the medium was low (100 üM), the presence of relatively high concentrations of Cl- (3 üM), on the one hand, greatly stimulated the maximal alkalinization rates but, on the other, Cl- severely reduced the steady NO-3-dependent rate of alkalinization. The data indicate that Cl- inhibits competitively NO-3 uptake with a Ki of 750 üM. Moreover, high concentrations of NO-3 (above 5 üM) reduced its own maximal, but not the steady, uptake rates. The above results allow us to propose that most of the components of the individual NO-3 and Cl- transport systems are under identical light control and, as the competition data suggest, that these two anions may be taken up by the same transport system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 100 (1997), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Blue light is one of the most important environmental signals regulating monovalent anion transport in plant cells. In the unicellular freshwater chlorophyte Monoraphidium braunii, blue light is essential for the activation of HCO3−, NO3−, NO22 and Cl− transport systems. These anions are taken up when blue light is present but the uptake ceases when this radiation is suppressed, indicating that blue light is a switch signal for the monovalent anion transport system(s) of this alga. Similar results have been obtained in other green algae and higher plants. The action spectra for the uptake of NO3− and Cl− in M. braunii are very similar and resemble the absorption spectra of flavins or a combination of flavins and pterins. It is proposed that both anions share the same transport system(s). The uptake of monovalent anions consists of a cotransport with H+, thus producing alkalinization of the external medium. The time between the onset of blue light and the beginning of alkalinization can be as short as 2 s. Taken together, the results suggest that the photoreceptor mediating the blue light activation of monovalent anion uptake in this green alga is a plasma membrane-bound flavoprotein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...