Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens secrete and subsequently translocate antihost effector proteins into target eukaryotic cells by a common type III secretion system (TTSS). In this process, YopD (Yersiniaouter protein D) is essential to establish regulatory control of Yop synthesis and the ensuing translocation process. YopD function depends upon the non-secreted TTSS chaperone LcrH (low-calcium response H), which is required for presecretory stabilization of YopD. However, as a new role for TTSS chaperones in virulence gene regulation has been proposed recently, we undertook a detailed analysis of LcrH. A lcrH null mutant constitutively produced Yops, even when this strain was engineered to produce wild-type levels of YopD. Furthermore, the YopD–LcrH interaction was necessary to regain the negative regulation of virulence associated genes yops). This finding was used to investigate the biological significance of several LcrH mutants with varied YopD binding potential. Mutated LcrH alleles were introduced in trans into a lcrH null mutant to assess their impact on yop regulation and the subsequent translocation of YopE, a Rho-GTPase activating protein, across the plasma membrane of eukaryotic cells. Two mutants, LcrHK20E, E30G, I31V, M99V, D136G and LcrHE30G lost all regulatory control, even though YopD binding and secretion and the subsequent translocation of YopE was indistinguishable from wild type. Moreover, these regulatory deficient mutants showed a reduced ability to bind YscY in the two-hybrid assay. Collectively, these findings confirm that LcrH plays an active role in yop regulation that might be mediated via an interaction with the Ysc secretion apparatus. This chaperone–substrate interaction presents an innovative means to establish a regulatory hierarchy in Yersinia infections. It also raises the question as to whether or not LcrH is a true chaperone involved in stabilization and secretion of YopD or a regulatory protein responsible for co-ordinating synthesis of Yersinia virulence determinants. We suggest that LcrH can exhibit both of these activities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 39 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pathogenic Yersinia species inject virulence proteins, known as Yops, into the cytosol of eukaryotic cells. The injection of Yops is mediated via a type III secretion system. Previous studies have suggested that YopE is targeted for secretion by two signals. One is mediated by its cognate chaperone YerA, whereas the other consists of either the 5′ end of yopE mRNA or the N-terminus of YopE. In order to characterize the YopE N-terminal/5′ mRNA secretion signal, the first 11 codons of yopE were systematically mutagenized. Frameshift mutations, which completely alter the amino acid sequence of residues 2–11 but leave the mRNA sequence essentially intact, drastically reduce the secretion of YopE in a yerA mutant. In contrast, a mutation that alters the yopE mRNA sequence, while leaving the amino acid sequence of YopE unchanged, does not impair the secretion of YopE. Therefore, the N-terminus of YopE, and not the 5′ end of yopE mRNA, serves as a targeting signal for type III secretion. In addition, the chaperone YerA can target YopE for type III secretion in the absence of a functional N-terminal signal. Mutational analysis of the YopE N-terminus revealed that a synthetic amphipathic sequence of eight residues is sufficient to serve as a targeting signal. YopE is also secreted rapidly upon a shift to secretion-permissive conditions. This ‘rapid secretion’ of YopE does not require de novo protein synthesis and is dependent upon YerA. Furthermore, this burst of YopE secretion can induce a cytotoxic response in infected HeLa cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens translocate effector proteins into target eukaryotic cells by a common type III secretion machine. Of the numerous proteins produced by Y. pseudotuberculosis that act in concert to establish an infection, YopD (Yersiniaouter protein D) is a crucial component essential for yop regulation and Yop effector translocation. In this study, we describe the mechanisms by which YopD functions to control these processes. With the aid of the yeast two-hybrid system, we investigated the interaction between YopD and the cognate chaperone LcrH. We confirmed that non-secreted LcrH is necessary for YopD stabilization before secretion, presumably by forming a complex with YopD in the bacterial cytoplasm. At least in yeast, this complex depends upon the N-terminal domain and a C-terminal amphipathic α-helical domain of YopD. Introduction of amino acid substitutions within the hydrophobic side of the amphipathic α-helix abolished the YopD–LcrH interaction, indicating that hydrophobic, as opposed to electrostatic, forces of attraction are important for this process. Suppressor mutations isolated within LcrH could compensate for defects in the amphipathic domain of YopD to restore binding. Isolation of LcrH mutants unable to interact with wild-type YopD revealed no single domain responsible for YopD binding. The YopD and LcrH mutants generated in this study will be relevant tools for understanding YopD function during a Yersinia infection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Delivery of Yop effector proteins by pathogenic Yersinia across the eukaryotic cell membrane requires LcrV, YopB and YopD. These proteins were also required for channel formation in infected erythrocytes and, using different osmolytes, the contact-dependent haemolysis assay was used to study channel size. Channels associated with LcrV were around 3 nm, whereas the homologous PcrV protein of Pseudomonas aeruginosa induced channels of around 2 nm in diameter. In lipid bilayer membranes, purified LcrV and PcrV induced a stepwise conductance increase of 3 nS and 1 nS, respectively, in 1 M KCl. The regions important for channel size were localized to amino acids 127–195 of LcrV and to amino acids 106–173 of PcrV. The size of the channel correlated with the ability to translocate Yop effectors into host cells. We suggest that LcrV is a size-determining structural component of the Yop translocon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Yersinia species utilize a type III secretion system to inject toxins, called Yops (Yersinia outer proteins), into eukaryotic cells. The N-termini of the Yops serve as type III secretion signals, but they do not share a consensus sequence. To simplify the analysis of type III secretion signals, we replaced amino acids 2–8 of the secreted protein YopE with all permutations (27 or 128) of synthetic serine/isoleucine sequences. The results demonstrate that amphipathic N-terminal sequences, containing four or five serine residues, have a much greater probability than hydrophobic or hydrophilic sequences to target YopE for secretion. Multiple linear regression analysis of the synthetic sequences was used to obtain a model for N-terminal secretion signals. The model accurately classifies the N-terminal sequences of native type III substrates as efficient secretion signals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The YopE cytotoxin of Yersinia pseudotuberculosis is an essential virulence determinant that is injected into the eukaryotic target cell via a plasmid-encoded type III secretion system. Injection of YopE into eukaryotic cells induces depolymerization of actin stress fibres. Here, we show that YopE exhibits a GTPase-activating protein (GAP) activity and that the presence of YopE stimulates downregulation of Rho, Rac and Cdc42 activity. YopE has an arginine finger motif showing homology with those found in other GAP proteins. Exchange of arginine 144 with alanine, located in this arginine finger motif, results in an inactive form of YopE that can no longer stimulate GTP hydrolysis by the GTPase. Furthermore, a yopE(R144A) mutant is unable to induce cytotoxicity on cultured HeLa cells in contrast to the corresponding wild-type strain. Expression of wild-type YopE in cells of Saccharomyces cerevisiae inhibits growth, while in contrast, expression of the inactive form of YopE, YopE(R144A), does not affect the yeast cells. Co-expression of proteins belonging to the Rho1 pathway of yeast, Rho1, Rom2p, Bck1 and Ste20, suppressed the growth phenotype of YopE in yeast cells. These results provide evidence that YopE exhibits a GAP activity to inactivate RhoGTPases, leading to depolymerization of the actin stress fibres in eukaryotic cells and growth inhibition in yeast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Type III-mediated translocation of Yop effectors is an essential virulence mechanism of pathogenic YersiniaLcrV is the only protein secreted by the type III secretion system that induces protective immunity. LcrV also plays a significant role in the regulation of Yop expression and secretion. The role of LcrV in the virulence process has, however, remained elusive on account of its pleiotropic effects. Here, we show that anti-LcrV antibodies can block the delivery of Yop effectors into the target cell cytosol. This argues strongly for a critical role of LcrV in the Yop translocation process. Additional evidence supporting this role was obtained by genetic analysis. LcrV was found to be present on the bacterial surface before the establishment of bacteria target cell contact. These findings suggest that LcrV serves an important role in the initiation of the translocation process and provides one possible explanation for the mechanism of LcrV-induced protective immunity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Introduction of anti-host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram-negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia, the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Håkansson et al., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK-mutant strain was found to induce a more rapid YopE-mediated cytotoxic response in HeLa cells as well as in MDCK-1 cells compared to the wild-type strain. We found that this was the result of a cell-contact-dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopB-dependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK-mutant strain showed a higher lytic activity and the induced pore was larger compared to the corresponding wild-type strain, whereas a strain overexpressing YopK reduced the lytic activity and the apparent pore size was smaller. The secreted YopK protein was found not to be translocated but, similar to YopB, localized to cell-associated bacteria during infection of HeLa cells. Based on these results, we propose a model where YopK controls the translocation of Yop effectors into eukaryotic cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The PTPase YopH of Yersinia is essential to the ability of these bacteria to block phagocytosis. Wild-type Yersinia pseudotuberculosis, but not the yopH mutant strain, resisted phagocytosis by J774 cells. Ingestion of a yopH mutant was dependent on tyrosine kinase activity. Transcomplementation with wild-type yopH restored the anti-phagocytic effect, whereas introduction of the gene encoding the catalytically inactive yopHC403A was without effect. The PTPase inhibitor orthovanadate impaired the anti-phagocytic effect of the wild-type strain, further demonstrating the importance of bacteria-derived PTPase activity for this event. The ability to resist phagocytosis indicates that the effect of the bacterium is immediately exerted when it becomes associated with the phagocyte. Within 30 s after the onset of infection, wild-type Y. pseudotuberculosis caused a YopH-dependent dephosphorylation of phosphotyrosine proteins in J774 cells. Furthermore, interaction of the cells with phagocytosable strains led to a rapid and transient increase in tyrosine phosphorylation of paxillin and some other proteins, an event dependent on the presence of the bacterial surface-located protein invasin. Co-infection with the phagocytosable strain and the wild-type strain abolished the induction of tyrosine phosphorylation. Taken together, the present findings demonstrate an immediate YopH-mediated dephosphorylation of macrophage phosphotyrosine proteins, suggesting that this PTPase acts by preventing early phagocytosis-linked signalling in the phagocyte.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Multiple yop mutant strains of Yersinia pseudotuberculosis not expressing several virulence effector Yop proteins (YopH, M, E, K and YpkA) were engineered. When high-copy-number plasmids carrying the ypkA or the yopE gene with their endogenous promoters were introduced into the engineered strains, the corresponding Yop protein was secreted at high levels in vitro. These multiple yop mutant strains, when harbouring the yopE gene in trans, behaved as the wild-type strain with respect to YopB-dependent translocation of YopE through the HeLa cell plasma membrane. Using these multiple yop mutant strains, it was demonstrated that the YpkA Ser/Thr protein kinase mediates morphological alterations of infected cultured HeLa cells different from those mediated by YopE and YopH. Furthermore, YpkA is shown to be translocated by a YopB-dependent translocation mechanism from surface-located bacteria and subsequently targeted to the inner surface of the target-cell plasma membrane. The pattern of YpkA localization after infection suggests that this Yop effector is involved in interference with signal transduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...