Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Rab proteins are small GTPases involved in intracellular trafficking. Among the 60 different Rab proteins described in mammals, Rab3a is the most abundant in brain, where it is involved in synaptic vesicle fusion and neurotransmitter release. Rab3a constitutive knockout mice (Rab3a−/−) are characterized by deficient short- and long-term synaptic plasticity in the mossy fiber pathway and altered circadian motor activity, while no effects on spatial learning have been reported so far for these mice. The goals of this study were to analyse possible behavioral consequences of the lack of synaptic plasticity in the mossy fiber pathway using a broad battery of sensitive behavioral measures that has been used previously to analyse the behavior of Gdi1 mice lacking a protein thought to regulate Rab3a. Rab3a−/− mice showed normal acquisition but moderately impaired platform reversal learning in the water maze including reference memory and episodic-like memory tasks. A mild deficit in spatial working memory was also observed when tested in the radial maze. Analysis of explorative behavior revealed increased locomotor activity and enhanced exploratory activity in open field, O-maze, dark/light box and novel object tests. Spontaneous activity in normal home cage settings was unaffected but Rab3a−/− mice showed increased motor activity when the home cage was equipped with a wheel. No differences were found for delayed and trace fear conditioning or for conditioned taste aversion learning. Congruent with earlier data, these results suggest that Rab3a-dependent synaptic plasticity might play a specific role in the reactivity to novel stimuli and behavioral stability rather than being involved in memory processing. On the other hand, the phenotypic changes in the Rab3a−/− mice bore no relation to the behavioral changes as observed in the Gdi1 mice. Such divergence in phenotypes implies that the putative synaptic interaction between Gdi1 and Rab3a should be reconsidered and re-analysed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The expression of the neural cell adhesion molecule L1 is altered by neuronal activity and promotes neurite outgrowth in vitro. To study the effects of L1 on learning and synaptic plasticity, transgenic mice have been created which express L1 ectopically in glial fibrillary acidic protein (GFAP) expressing astrocytes. Ninety mice, including GFAP-L1-transgenic mice from two genetic backgrounds and their littermates, were tested for swimming navigation learning in the Morris water maze according to a standardized protocol. While learning the position of an invisible target platform and also relearning its position after relocation, GFAP-L1-transgenic mice spent a greater fraction of their swim time in the target quadrant. Moreover, they showed a more rapid improvement of escape performance during the first day of training. Factor analysis revealed that this difference in swimming pattern could not be explained by non-cognitive factors. Factor analysis also revealed that, during a probe trial, the GFAP-L1-transgenic mice spent comparatively less time in the old target quadrant than predicted by the increased searching they had shown during acquisition learning. Hence, ectopic expression of L1 by astrocytes in mice appears to be linked to a factor which increases behavioural flexibility and selectivity while learning and relearning, but concomitantly may lead to a relative reduction of spatial retention.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Members of the Ras subfamily of small guanine-nucleotide-binding proteins are essential for controlling normal and malignant cell proliferation as well as cell differentiation. The neuronal-specific guanine-nucleotide-exchange factor, Ras-GRF/CDC25Mm (refs 2,3,4), ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 432 (2004), S. 821-822 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mice housed in standard cages show impaired brain development, abnormal repetitive behaviours (stereotypies) and an anxious behavioural profile, all of which can be lessened by making the cage environment more stimulating. But concerns have been raised that enriched housing might disrupt ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-3297
    Keywords: Mouse ; genetic variation ; hippocampus ; infrapyramidal mossy fibers ; open field ; selective breeding ; hemispheric asymmetries ; exploration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Psychology
    Notes: Abstract The brains of mice selectively bred for differential locomotor activity in an open field (DeFrieset al., Behav. Genet. 8:3–13, 1978) were analyzed for selection-dependent changes in the size of synaptic fields at the midseptotemporal level of the hippocampus. Timm-stained areas of all hippocampal fields from both left and right hippocampi were measured on five horizontal sections from the midseptotemporal level. The sample included 25 mice from two replicate lines, each one consisting of a high (HI); a low (LO), and a control line (CTL). The main selection effect was an enlargement of the intrainfrapyramidal mossy fiber (IIP-MF) projection in both HI lines by about 70% compared to LO and CTL mice (p〈.0001), while other mossy fiber fields did not show differences. These findings confirm that genetic variations of the IIP-MF projection influence hippocampal processes mediating exploratory activities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-3297
    Keywords: Mouse ; Robertsonian translocation ; chromosome 8 ; chromosome 17 ; swimming navigation ; open field ; extrapolation task ; strain C57BL/6 ; strain CBA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Psychology
    Notes: Abstract Female mice from inbred strains carrying a Robertsonian translocation (nine CBARb and eight C57BL/6Rb) were compared with animals from their respective strains (seven CBA and nine C57BL/6) first in open-field activity (two exposures of 10-min duration), then during 5 days (with six trials each) in Morris' swimming navigation test, and finally, in their ability to extrapolate the future position of a food reward being moved slowly out of their reach. ANOVA (strain and translocation) revealed significant effects of Robertsonian translocations (Rb) in swimming navigation,Rb mice being impaired primarily in the initial phases of acquisition and during the first trials of platform reversal and the impairment being stronger in C57BL/6 mice. In the open field,Rb mice were as active as the normal strains but showed significantly increased path tortuosity and moved slightly faster. In the extrapolation task,Rb mice showed above-chance levels in moving to the target indicated by the disappearance of the stimulus, while normal mice chose at chance levels, but the translocation effects were not statistically significant. These data indicate that telocentric fusion of chromosomes may entail behavioral alterations, perhaps by subtle changes in neurotransmitters or limbic circuitry. The expression of such alterations, however, can be remarkably strain dependent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-3297
    Keywords: Mouse ; genetic variation ; hippocampus ; infrapyramidal mossy fibers ; selective breeding ; hemispheric asymmetries ; paw preference
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Psychology
    Notes: Abstract The size of the intra-/infrapyramidal mossy fiber projections (IIP-MF) and their left/right asymmetry were assessed in 86 mice of either sex, including 26 animals from two mouse lines bred for strong or weak paw preference, 38 mice of a randomly bred F3 generation derived from an eight-way cross, and 22 mice with variably sized corpora callosa in which only the left hippocampus was measured. Prior to morphometry, all mice were tested for paw preference. In addition, we compared the strain means in paw preference as observed in nine inbred mouse strains with known differences in their IIP-MF distribution. Mice bred for strong paw preference had a 70% larger IIP-MF projection than weakly lateralized and dyscallosal mice; random-bred mice fell in-between the extremes. The individual scores of the strength of paw preference were positively correlated with the extent of the IIP-MF. Among the inbred strains, the extent of the IIP-MF was similarly correlated with the strength of paw preference. The acallosal mice showed a significant negative correlation between extent of the IIP-MF projection and test-retest reliability of paw use. The left-right asymmetry of the IIP-MF was significantly and positively correlated with the direction of paw preference in the entire sample. We conclude that size and asymmetry of the IIP-MF projection are some of the many factors influencing the direction of paw preference and its strength, albeit moderately. We hypothesize that mice with larger IIP-MF projections use a given paw more consistently, being perhaps more resistant to interferences, and that left-right asymmetries of the IIP-MF may bias and/or reinforce an initial choice of a paw. In addition, the data provide another example of correlations between IIP-MF variations and nonspatial behavior.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...