Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: coal fly ash ; gypsum ; Medicago sativa L. ; selenium ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Experiments in the field and greenhouse were conducted in the presence of coal fly ash to determine whether gypsum can reduce Se concentration in alfalfa (Medicago sativa L.). In the field experiment, conducted at a coal fly ash landfill, 11.2 t ha-1 gypsum was applied to soil as a top dressing to test the effect of gypsum in reducing selenium (Se) concentration in aboveground plant tissue. There were four treatment combinations of gypsum over a two year period, 1990 and 1991: (0, 0), (0, 11.2) (11.2, 0) and (11.2, 11.2). In 1991, the Se concentration was lower in alfalfa grown with gypsum regardless of whether the gypsum was applied in both years or in only one year, indicating that the effect of gypsum application in the first year persisted into the second year. Since there was no increase in aboveground biomass with added gypsum, differences in Se concentration reflect a competitive interaction between S and Se. In the greenhouse experiment, 12 soil treatments were tested: three levels of fly ash (0, 10 and 20%) in combination with each of four levels of gypsum (0, 2.5, 5, and 7.5%). The Se concentration in alfalfa grown in 10% fly ash declined linearly with increasing gypsum dose, resulting in a reduction in Se concentration of 0.04±0.02 μg g-1 for each 1% gypsum added for the first harvest and 0.06±0.03 μg g-1 for each 1% gypsum added in the second harvest. Based on these results, gypsum may prove useful as a management tool to reduce the uptake of Se by plants growing on coal fly ash landfills. ei]H Lambers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: boron ; coal fly ash ; landfill ; molybdenum ; plant ; selenium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Improved methods are required to assess the risks posed by the uptake of potentially toxic elements such as selenium (Se), boron (B), and molybdenum (Mo) by vegetation on contaminated sites. In order to develop such methods and assess risk, vegetation was collected from two sites on a soil-capped coal fly ash landfill near Dunkirk, New York, during June of 1991 and June and August of 1992. The mean concentrations (μg g-1 dry weight) of Se and Mo in the shoots did not exceed, respectively, 0.12 and 18.7 in bird's-foot trefoil (Lotus corniculatus L.), 0.06 and 12.1 in red clover (Trifolium pratense L.), 0.07 and 5.3 in timothy (Phleum pratense L.), and 0.09 and 2.2 in a mixture of grasses. These concentrations were greater than those in the same species harvested concurrently from a non-landfill site. The mean concentrations of B at the landfill ranged from 29 to 53 μg g-1 in the legumes and from 2 to 11 μg g-1 in the grasses, less than those at one non-landfill site but greater than those at another. Within the landfill, the concentration of Se in grasses was not correlated with the concentration of Se in soil and fly ash. The concentration of Se in grasses on both landfill sites was double that of grasses on the non-landfill site despite higher mean concentrations of Se in the upper soil (0–15 cm) on the non-landfill site. Therefore grass roots seem to be accessing Se from the ash by means of mass flow or other mechanisms. Based on our findings of significant variation in trace element uptake among species, harvests, and locations within sites, we recommend that contemporaneous transect sampling of at least two species be used to assess uptake of potentially toxic trace elements on landfills or other sites where contamination may occur.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...