Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulated a rapid, extracellular Ca2+-dependent conversion of [3H]arginine to [3H]citrulline in primary cultures of cerebellar granule cells, indicating receptor-mediated activation of nitric oxide (NO) synthase. The NMDA-induced formation of [3H]citrulline reached a plateau within 10 min. Subsequent addition of unlabeled l-arginine resulted in the disappearance of 3H from the citrulline pool, indicating a persistent activation of NO synthase after NMDA receptor stimulation. Glutamate, NMDA, and kainate, but not quisqualate, stimulated both the conversion of [3H]arginine to [3H]citrulline and cyclic GMP accumulation in a dose-dependent manner. Glutamate and NMDA showed similar potencies for the stimulation of [3H]citrulline formation and cyclic GMP synthesis, respectively, whereas kainate was more potent at inducing cyclic GMP accumulation than at stimulating [3H]citrulline formation. Both the [3H]arginine to [3H]citrulline conversion and cyclic GMP synthesis stimulated by NMDA were inhibited by the NMDA receptor antagonist MK-801 and by the inhibitors of NO synthase, NG-monomethyl-L-arginine (MeArg) and NG-nitro-L-arginine (NOArg). However, MeArg, in contrast to NOArg, also potently inhibited [3H]arginine uptake. Kainate (300 μM) stimulated 45Ca2+ influx to the same extent as 100 μM NMDA, but stimulated [3H]citrulline formation to a much lesser extent, which suggests that NO synthase is localized in subcellular compartments where the Ca2+ concentration is regulated mainly by the NMDA receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The neuronal dipeptide N-acetylaspartylglutamate (NAAG) fulfills several of the criteria for classification as a neurotransmitter including localization in synaptic vesicles, calcium-dependent release after neuronal depolarization, and low potency activation of N-methyl-d-aspartate receptors. In the present study, the influence of NAAG on metabotropic receptor activation in cerebellar granule cells was examined in cell culture. Stimulation of granule cell adenylate cyclase with forskolin increased cyclic AMP (cAMP) several hundredfold above basal levels within 10 min in a concentration-dependent manner. Although gluta-mate, NAAG, and the metabotropic receptor agonist frans-1-amino-1, 3-cyclopentanedicarboxylic acid did not alter the low basal cAMP levels, the application of 300 μM glutamate or NAAG or trans-1-amino-1, 3-cyclopentanedicarboxylic acid reduced forskolin-stimulated cAMP in granule cells by 30–50% in the absence or presence of inhibitors of ionotropic acidic amino acid receptors, as well as 2-amino-4-phosphonobutyrate. No additivity in the inhibition of cAMP was found when 300 μM NAAG and trans-1-amino-1, 3-cyclopentanedicarboxylic acid were coapplied. The β-analogue of NAAG failed to reduce cAMP levels. Similar effects of NAAG and glutamate were obtained under conditions of inhibition of phosphodiesterase activity and were prevented by pretreatment of the cells with pertussis toxin. These data are consistent with the activation by NAAG of a metabotropic acidic amino acid receptor coupled to an inhibitory G protein. In contrast, the metabotropic acidic amino acid receptor coupled to phosphoinositol turnover in these cells was not activated by NAAG. Granule cells in culture expressed very low levels of extracellular peptidase activity against NAAG, converting to glutamate 〈0.1% of the 10 μM through 1 mM NAAG applied to these cells during 15-min in vitro assays.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cerebellar granule neurons in primary culture express metabotropic glutamate receptors (mGluRs) coupled to the stimulation of phosphoinositide hydrolysis and to the inhibition of cyclic AMP (cAMP) formation. To evaluate which mGluR mRNAs are expressed in granule neurons under different depolarizing conditions, we measured the absolute amounts of selected receptor mRNAs in neurons cultured for 3–13 days in the presence of either 10 or 25 mM KCl. mGluR-specific primer pairs and internal standards, corresponding to unique regions of mGluR1a, mGluR2, mGluR3, mGluR4, and mGluR5, were constructed and used in a competitive PCR-derived assay to quantify the corresponding mRNA levels. For phosphoinositide-coupled receptors, the absolute content of mGluR1a mRNA was three to 10 times higher than the content of mGluR5 mRNA. The expression of mGluR5 mRNA increased up to 9 days in vitro and was much higher in 10 mM than in 25 mM KCl. For the cAMP-coupled receptors, there was a large amount of mGluR4 mRNA and a much smaller content of the mGluR3 and mGluR2 mRNAs. Maintaining the granule neurons in vitro in 10 mM KCl increased the absolute amount of mRNAs encoding mGluR2 and mGluR4 at 9 and 13 days in vitro. In contrast, the content of the mGluR3 mRNA was consistently higher in neurons cultured in 25 mM KCl. These data are consistent with the possibility that in primary cultures of cerebellar neurons, phosphoinositide responses may be predominantly mediated by mGluR1a, rather than mGluR5, and that cAMP inhibition involves preferentially mGluR4 and mGluR3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In previous studies, we demonstrated that the neuropeptide, N-acetylaspartylglutamate (NAAG), meets the traditional criteria for a neurotransmitter and selectively activates metabotropic glutamate receptor mGluR2 or mGluR3 in cultured cerebellar granule cells and glia. Sequence homology and pharmacological data suggest that these two receptors are highly related structurally and functionally. To define more rigorously the receptor specificity of NAAG, cloned rat cDNAs for mGluR1–6 were transiently or stably transfected into Chinese hamster ovary cells and human embryonic kidney cells and assayed for their second messenger responses to the two endogenous neurotransmitters, glutamate and NAAG, as well as to metabotropic receptor agonists, trans-1-aminocyclopentane-1,3-dicarboxylate (trans-ACPD) and l-2-amino-4-phosphonobutyrate (l-AP4). Despite the high degree of relatedness of mGluR2 and mGluR3, NAAG selectively activated the mGluR3 receptor. NAAG activated neither mGluR2 nor mGluR1, mGluR4, mGluR5, or mGluR6. The mGluR agonist, trans-ACPD, activated each of the transfected receptors, whereas l-AP4 activated mGluR4 and mGluR6, consistent with the published selectivity of these agonists. Hybrid cDNA constructs of the extracellular domains of mGluR2 and mGluR3 were independently fused with the transmembrane and cytoplasmic domain of mGluR1a. This latter receptor domain is coupled to phosphoinositol turnover, and its activation increases intracellular calcium. The cells transfected with these chimeric receptors responded to activation by glutamate and trans-ACPD with increases in intracellular calcium. NAAG activated the chimeric receptor that contained the extracellular domain of mGluR3 and did not activate the mGluR2 chimera.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Phencyclidine (PCP) administration elicits positive and negative symptoms that resemble those of schizophrenia and is widely accepted as a model for the study of this human disorder. Group II metabotropic glutamate receptor (mGluR) agonists have been reported to reduce the behavioral and neurochemical effects of PCP. The peptide neurotransmitter, N-acetylaspartylglutamate (NAAG), is a selective group II agonist. We synthesized and characterized a urea-based NAAG analogue, ZJ43. This novel compound is a potent inhibitor of enzymes, glutamate carboxypeptidase II (Ki = 0.8 nm) and III (Ki = 23 nm) that deactivate NAAG following synaptic release. ZJ43 (100 µm) does not directly interact with NMDA receptors or metabotropic glutamate receptors. Administration of ZJ43 significantly reduced PCP-induced motor activation, falling while walking, stereotypic circling behavior, and head movements. To test the hypothesis that this effect of ZJ43 was mediated by increasing the activation of mGluR3 via increased levels of extracellular NAAG, the group II mGluR selective antagonist LY341495 was co-administered with ZJ43 prior to PCP treatment. This antagonist completely reversed the effects of ZJ43. Additionally, LY341495 alone increased PCP-induced motor activity and head movements suggesting that normal levels of NAAG act to moderate the effect of PCP on motor activation via a group II mGluR. These data support the view that NAAG peptidase inhibitors may represent a new therapeutic approach to some of the components of schizophrenia that are modeled by PCP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 33 (1990), S. 1561-1571 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 5 (1993), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Human immunodeficiency virus (HIV-1) infection often results in central nervous system (CNS) dysfunction, yet the mechanism(s) of action for HIV-1 in the CNS are not fully understood. In the present study gp120, the HIV-1 envelope glycoprotein, was shown to selectively inhibit N-methyl-d-aspartate (NMDA) receptor function. In addition to inhibiting radioligand binding to rat NMDA receptors, gp120 inhibited NMDA-induced currents in Xenopus oocytes, attenuated NMDA-stimulated calcium flux and cytotoxicity in cultured cerebellar granule cells, and provided partial protection against NMDA-induced lethality in vivo. These findings suggest that NMDA receptor complex is a possible site of action of HIV-1 within the CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...