Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 29 (1990), S. 1612-1621 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 979-990 
    ISSN: 0006-3592
    Keywords: glycidyl butyrate ; kinetic resolution ; membrane reactor ; immobilized enzyme ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A laboratory-scale multiphase hollow fiber membrane reactor was employed to investigate the lipase-catalyzed enzymatic resolution of racemic glycidyl butyrate. A mathematical formulation was feveloped to simulate the performance of this system. Model parameters were determined independently (except the effective rate constant, ks) and incorporated in the model simulations. In this study, two modes of operation are considered: subtractive resolution, in which the unreacted substrate is recovered in the organic stream; and product recovery, where the optically pure product of the enzymatic reaction is recovered in the aqueous stream. Good agreement was obtained between theoretical predictions and experimental results under a variety of conditions. The effect of mass transport limitations on the performance of this system was investigated. An increase in enzyme loading resulted in a higher Thiele modulus due to an elevated rate constant as well as a concomitant decrease in the effective diffusivity. Optical purity decreased in both subtractive resolution and product recovery at higher Thiele modulus with the effect being more pronounced in the product recovery mode. Finally, normalized plots were established to describe the effect of enzyme immobilization on both the effective enzymes activity and effective diffusivity. © 1993 Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...