Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 34 (1991), S. 648-652 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A simple method of assessing the viability of a lactic starter culture is presented. The method is based on the kinetics of growth of a culture during the lag and early exponential phases. The microorganisms used throughout this work were Lactobacillus spp. The method was tested with inocula samples of different ages and with samples taken during chemostat runs, at different dilution rates. The results obtained are similar to ones describes in the literature for similar situations. The method is very easy to operate once the intrinsic parameters have been established (χmax and μmax). It needs only standard laboratory equipment and is very economical.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Batch cultures of Lactobacillus rhamnosus were carried out at different pH values in order to study the limitation of growth and lactic acid production by the hydrogen ion, non-dissociated lactic acid and internal lactate concentrations. The effect of pH between 5 and 6.8 was studied at non-limiting concentrations of glucose; this is more significant for the lactic acid fermentation rate than for the maximum specific growth rate, as shown by the incomplete substrate consumption at lower values of medium pH and by the constant maximum cell mass obtained within the range of pH values studied. To check whether these results were a direct consequence of the different concentrations of the non-dissociated form of lactic acid at different external pH values, specific growth rates and lactic acid productions rates were calculated for each external pH value. The same specific growth rates were observed at the same non-dissociated lactic acid concentrations only at pH values of 5 and 5.5. For higher values of pH (pH 〉 6) the specific growth rate falls to zero as the non-dissociated lactic acid concentration decreases. This shows that generalisations made from studies performed within very narrow ranges of pH are not valid and that the non-dissociated form of lactic acid is not the only inhibiting species. The internal pH was measured experimentally for each external pH value in order to calculate the internal lactate ion concentration. This form is described to be the inhibitory one. The results obtained confirmed that the specific growth rate reached zero at approximately the same lactate concentration for all the pH values studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 320-327 
    ISSN: 0006-3592
    Keywords: cell recycle reactor ; ultrafiltration tubular membranes ; high lactic acid productivities ; best operational conditions ; different dilution rates ; start-up strategy ; membrane permeability ; long-term fermentations ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lactic acid production with cell recycling on an ultrafiltration tubular membrane reactor was studied; higher lactic acid concentrations as well as productivities were obtained under long-term fermentations compared with other high cell density systems. Different operational conditions, namely dilution rates and start-up modes, were assessed. Performances were very different at the three different dilution rates tested (D = 0.20 h-1, D = 0.40 h-1, or D = 0.58 h-1). The different behaviours are discussed and factors responsible for them are presented. The best way to operate for lactic acid production is chosen, the dilution rate of D = 0.40 h-1 being the one providing the best overall performance. On the other hand, results show that of the two start-up modes tested, continuous start (membrane open) permits higher permeabilities throughout the operational runs than batch start (membrane closed). Operational stability was found to be directly associated with membranes that work at “steady state,” the membrane permeability being kept around 15 L/m2 h. Optimized cell bleed can improve time of operation if such membrane permeability can be maintained for a longer time. A comparison of results with those obtained in other lactic acid production systems is presented; such comparison shows that this tubular ultrafiltration membrane cell recycle reactor presents three important advantages: (1) concomitant lactic acid concentrations and productivities; (2) long periods of operation at reasonable permeabilities; and (3) good mechanical stability permitting the use of steam sterilization. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...