Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 823-841 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a study of the dissociation of CH3I on coupled repulsive electronic potential energy surfaces by the technique of polarized emission spectroscopy. We excite CH3I at 266 nm and disperse the photons emitted from the dissociating molecule by both frequency and angular distribution with respect to the polarization direction of the excitation laser. We thus measure the polarization of the first 12 C–I stretching emission features, corresponding to the spectral region between 266 and 317 nm. We also obtain the rotational envelope of selected emission features in higher resolution scans and model the lineshapes with parameters derived from the polarization results. The polarization measurements show the emission into the first few low-lying C–I stretching vibrational levels is via a transition moment parallel to the absorbing one, consistent with excitation to and emission from the 3Q0(2A1) repulsive surface. Emission to higher C–I stretching overtones shows an increasing contribution from emission via a transition moment perpendicular to the absorbing one, consistent with emission from a repulsive surface of E symmetry following excitation to the 3Q0(2A1) state.We extract from the data the fraction of photons emitted via a perpendicular transition for each of the C–I stretch emission features. The analysis includes the derivation of analytic expressions for the angular distribution of the photons, with and without integration over the rotational contour, when the detector has a finite acceptance angle. We discuss the results in relation to a simple model where photoabsorption excites the molecule to the 3Q0(2A1) repulsive surface (parallel transition moment) and amplitude develops on the 1Q1(3E) repulsive surface as the molecule dissociates through a curve crossing. The changes in amplitude of the molecular wavefunction on the A1 vs the E repulsive surfaces during dissociation is thus probed. We outline a crude classical quasidiatomic approximation for roughly extracting from our data the electronic energy at which the "curve crossing'' occurs. This derived energy is compared to that given in model and ab initio calculations of the excited electronic potential energy surfaces. Finally, we discuss the results in relation to the simple quasidiatomic Landau–Zener crossing model utilized by other workers, a model which does not fully explain the collection of experimental results over the last decade on the iodoalkane curve crossing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...