Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 78 (2001), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The mitogen-activated protein kinase (MAPK) cascade is an important contributor to synaptic plasticity and learning in both vertebrates and invertebrates. In the nudibranch mollusk Hermissenda, phosphorylation and activation of the extracellular signal-regulated protein kinase (ERK), a key member of a MAPK cascade, is produced by one-trial and multitrial Pavlovian conditioning. Several signal transduction pathways that are activated by 5-hydroxytryptamine (5-HT) and may contribute to conditioning have been identified in type B photoreceptors. However, the regulation of ERK activity by ‘upstream’ signaling molecules has not been previously investigated in Hermissenda. In the present study we examined the role of protein kinase C (PKC) in the serotonin (5-HT) activation of the ERK pathway. The phorbol ester TPA produced an increase in ERK phosphorylation that was blocked by the PKC inhibitors GF109203X or Gö6976. TPA-dependent ERK phosphorylation was also blocked by the MEK1 inhibitors PD098059 or U0126. The increased phosphorylation of ERK by 5-HT was reduced but not blocked by pretreatment with the calcium chelator BAPTA-AM or pretreatment with Gö6976 or GF109203X. These results indicate that Ca2+-dependent PKC activation contributes to ERK phosphorylation, although a PKC-independent pathway is also involved in 5-HT-dependent ERK phosphorylation and activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...