Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 24 (1976), S. 563-565 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 26 (1978), S. 1076-1083 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 19 (1971), S. 10-13 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 19 (1971), S. 14-19 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0738
    Keywords: Key words CCl4 ; Kepone ; PBPK/PD ; Mixtures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Carbon tetrachloride (CCl4) lethality in Sprague-Dawley rats is greatly amplified by pretreatment of Kepone (decachlorooctahydro-1,3,2-metheno-2H-cyclobuta[cd]pentalen-2-one). The increase in lethality was attributed to the obstruction of liver regenerative processes. These processes are essential for restoring the liver to its full functional capacity following injury by CCl4. Based on the available mechanistic information on Kepone/CCl4 interaction, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was constructed where the following effects of Kepone on CCl4 toxicity are incorporated: (1) inhibition of mitosis; (2) reduction of repair mechanism of hepatocellular injury; (3) suppression of phagocytosis. The PBPK/PD model provided computer simulation consistent with previously published time-course results of hepatotoxicity (i.e., pyknotic, injured and mitotic cells) of CCl4 with or without Kepone. As a further verification of this model, the computer simulations were also consistent with exhalation kinetic data for rats injected with different intraperitoneal (i.p.) doses of CCl4 in our laboratory. Subsequently, the PBPK/PD model, coupled with Monte Carlo simulation, was used to predict lethalities of rats treated with CCl4 alone and CCl4 in combination with Kepone. The experimental lethality studies performed in our laboratories were as follows: Sprague-Dawley rats were given either control diet or diet containing 10 ppm Kepone for 15 days. On day 16, rats in the Kepone treated group were given i.p. doses of 0, 10, 50, and 100 μl/kg CCl4 (n=9) while control rats were exposed to 0, 100, 1000, 3000, and 6000 μl/kg CCl4 (n=9). Lethality was observed at the 1000 (1/9), 3000 (4/9), and 6000 (8/9) μl/kg doses for the control group and at the 50 (4/9) and 100 (8/9) μl/kg for the treated group. Based on Monte Carlo simulation, which was used to run electronically 1000 lethality experiments for each dosing situation, the LD50 estimates for CCl4 toxicity with and without Kepone pretreatment were 47 and 2890 μl/kg, respectively. Monte Carlo simulation coupled with the PBPK/PD model produced lethality rates which were not significantly different from the observed mortality, with the exception of CCl4 at very high doses (e.g., 6000 μl/kg, p=0.014). Deviation at very high doses of the predicted mortality from the observed may be attributed to extrahepatic systemic toxicities of CCl4, or solvent effects on tissues at high concentrations, which were not presently included in the model. Our modeling and experimental results verified the earlier findings of Mehendale (1990) for the 67-fold amplification of CCl4 lethality in the presence of Kepone. However, much of this amplification of CCl4 lethality with Kepone pretreatment was probably due to pharmacokinetic factors, because when target tissue dose (i.e., model estimated amount of CCl4 metabolites) was used to evaluate lethality, this amplification was reduced to 4-fold.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0738
    Keywords: Key words Chlorinated hydrocarbons ; Trichloroethylene ; 1 ; 1-Dichloroethylene ; Pharmacokinetic ; Models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Physiologically based pharmacokinetic (PBPK) modeling and gas uptake experiments were utilized to verify the competitive inhibition mechanism of interaction between trichloroethylene (TCE) and 1,1-dichloroethylene (DCE) and to investigate the presence of an interaction threshold between the two chemicals. Initially, gas uptake experiments were conducted on Fischer 344 rats where the initial concentrations of both DCE and TCE were 2000 : 0, 0 : 2000, 2000 : 2000, 1000 : 0, 1000 : 1000, and 500 : 500 ppm, respectively. When the different modes of inhibition interactions (competitive, uncompetitive and noncompetitive) were employed in the PBPK model, the model description of the competitive inhibition interaction provided the best description of the declining concentrations in the gas uptake chamber. Furthermore, to predict the range at which the interaction threshold would be found, the PBPK model included a mathematical description of the percentage of enzyme sites occupied by either chemical in the presence or the absence of the other. By comparing the percentage of occupied sites by one chemical, in the presence of the other, to those sites occupied in the absence of the latter, the PBPK model predicted a range of concentrations (100 ppm or less) of either chemical where the competitive inhibition interaction would not be observed. Consequently, gas uptake experiments were designed where the initial concentration was selected at 2000 ppm for one chemical while the other chemical was set at 100 in one experiment and 50 ppm in another. Under these conditions, the best simulation to the concentration depletion curves in the gas uptake system of the chemical in the higher concentration was obtained when the PBPK model was run under the assumption of no-interaction. This substantiated the model predictions of the presence of observable interaction only at concentrations higher than 100 ppm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...