Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Terminally blocked (L-Pro-Aib)n and Aib-(L-Pro-Aib)n sequential oligopeptides are known to form right-handed β-bend ribbon spirals under a variety of experimental conditions. Here we describe the results of a complete CD and ir characterization of this subtype of 310-helical structure. The electronic CD spectra were obtained in solvents of different polarity in the 260-180 nm region. The vibrational CD and Fourier transform ir (FTIR) spectra were measured in deuterochloroform solution in the amide I and amide II (1750-1500 cm-1) regions. The critical chain length for full development of the β-bend ribbon spiral structure is found to be five to six residues. Spectral effects related to concentration-induced stabilization of the structures of the longer peptides were seen in the resolution-enhanced FTIR spectra. Comparison to previous studies of (Aib)n and (Pro)n oligomers indicate that the low frequency of the amide I mode is due to the interaction of secondary and tertiary amide bonds and not to a strong difference in conformation from a regular 310-helix. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Vibrational CD (VCD) spectra of a series of blocked linear, alternating D- and L-proline containing oligopeptides, dissolved in D2O and in CDCl3. are reported. For the Boc-LDL-Pro3 to Boc-DLDLDLDL-Pro8 oligomers. The VCD spectra in the amide I band is a positive couplet, opposite in sense to that obtained for (L-Pro)n oligomers. While this admits the possibility of their favoring a right-handed helical chain conformation, the amide I ir spectra for these dl oligomers in D2O indicate a mixed, apparently alternate, cis-trans conformation that prevents a simple conclusion. Their VCD in D2O evidence no narrowing and has a progressive loss in intensity (measured as Δ /A,) with an increase in chain length. In CDCl3a similar pattern of positive VCD couplets decreasing in intensity with length was seen, but their spectra are narrower. Their electronic CD (ECD) in the uv, also indicates a loss in intensity with increasing length. Oligomers with odd or even numbers of Pro residues have different ECD patterns, indicating that those spectra are strongly influenced by local contributions arising in the N-terminal groups. The VCD arises from dipolar and vibrational coupling of the amides in the helical structure. All the spectra are consistent with the chiral end groups leading to formation of an excess of one helical handedness. With an increase in length, the influence of this selectiveness is less and the overall CD measured decreases. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...