Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 4928-4938 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electronic structures of evaporated films of five organic light-emitting and carrier-injecting materials for organic electroluminescent devices were studied by ultraviolet photoemission spectroscopy. The compounds examined were (i) light-emitting materials tris(8-hydroxyquinolino) aluminum (Alq3) and 1,2,3,4,5-pentaphenylcyclopentadiene, (ii) a hole-injecting material N,N′-bis(3-methylphenyl)-N,N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine, and (iii) electron-injecting materials N,N′-diphenyl-1,4,5,8-naphthyletracarboxyldiimide and 1,3,5-tris(5-phenyl-1,3,4-oxadiazol-2-yl)benzene. The spectral features corresponding to the top parts of the valence states, which dominate the electric properties of the materials, were assigned by the comparison with the simulated density of states obtained from PM3 molecular orbital calculations. Using these calculations, the evolution of the electronic structure of each molecule from those of constituent parts was discussed. The characters of the unoccupied states obtained by these calculations were also presented. Using these data, the correlation between the ionization threshold energies determined by ultraviolet photoemission spectroscopy and the carrier-injecting and light-emitting properties were discussed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Ultraviolet photoelectron spectra were measured using synchrotron radiation for two kinds of π-conjugated polymers, poly(pyridine-2,5-diyl) (PPy) and poly(2,2′-bipyridine-5,5′-diyl) (PBPy) which exhibit n-type electrically conducting properties. The two compounds show similar spectra and they were analyzed with MO calculations and the comparison with the data of related molecules. The ionization threshold energies of PPy and PBPy were found to be 6.3 and 6.35 eV, respectively. These values are higher than those of π-conjugated conducting polymers capable of p doping. Upon potassium doping of PBPy, two new states appeared in the originally empty energy gap and the intensity of the state at 0.65 eV from EF grows as the doping proceeds. This finding and the change of optical absorption spectra upon doping indicate that bipolaron bands are formed in K-doped PBPy. While K-doped PPy also shows similar gap states, it requires higher dopant concentration to create bipolaron bands than in the case of K-doped PBPy. The difference of the dependence on dopant concentration between K-doped PPy and K-doped PBPy is discussed based on the conformational difference between these polymers. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...