Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 243-251 
    ISSN: 1432-0878
    Keywords: Key words: Convergent-extension ; Ectoderm ; Neural plate ; Domestic fowl ; Quail
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The rearrangement of ectodermal cells was studied in chimeras in which grafts were transplanted during late gastrula and early neurula stages to heterotopic locations in avian embryos. Three types of experiments were done. In all experiments, Hensen’s node was extirpated completely and replaced with an epithelial plug derived from 1 of 3 regions of the prospective ectoderm. In type-1 experiments, Hensen’s node was replaced with a plug consisting of precursor cells of the floor plate of the neural tube. In type-2 experiments, Hensen’s node was replaced with a plug consisting of precursor cells of the lateral wall of the neural tube. In type-3 experiments, Hensen’s node was replaced with a plug consisting of precursor cells of the epidermal ectoderm. In all experiments, the amount and direction of cell rearrangement that occurred in the transplanted ectodermal plug was essentially typical for prospective ectodermal cells normally residing within Hensen’s node. That is, transplanted ectodermal cells underwent lateral-to-medial cell-cell intercalation and contributed to the ventral midline of the neural tube along its entire rostrocaudal extent. In most embryos, a notochord was reconstituted from host cells, despite the fact that Hensen’s node – the prime source of prospective notochordal cells in intact embryos – was extirpated completely; however, a few embryos had long notochordal gaps. In such essentially notochordless embryos, the ventral midline of the neural tube still derived from grafted cells, but it failed to form a floor plate, providing further confirmation of the results of several previous studies that the notochord is required to induce the floor plate. Collectively, our results provide evidence that the rearrangement of ectodermal cells does not require the presence of a ”trail” of prospective floor plate cells (laid down by the regressing Hensen’s node), or of a notochordal substrate, and that the continued presence of an organizer per se, ostensibly Hensen’s node, is not required. In addition, our results demonstrate that the rearrangement of cells still occurs in the absence of ”boundaries” between ectodermal cells of different phenotypes (e.g., between cells of the floor plate and lateral walls of the neural tube). Finally, our results reveal further that the amount and direction of cellular rearrangement is not regulated in a cell-autonomous fashion, but rather it is determined by the overall magnitude and vector of the displacement of the community of rearranging cells within a developmental field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 243-251 
    ISSN: 1432-0878
    Keywords: Convergent-extension ; Ectoderm ; Neural plate ; Domestic fowl ; Quail
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The rearrangement of ectodermal cells was studied in chimeras in which grafts were transplanted during late gastrula and early neurula stages to heterotopic locations in avian embryos. Three types of experiments were done. In all experiments, Hensen's node was extirpated completely and replaced with an epithelial plug derived from 1 of 3 regions of the prospective ectoderm. In type-1 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the floor plate of the neural tube. In type-2 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the lateral wall of the neural tube. In type-3 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the epidermal ectoderm. In all experiments, the amount and direction of cell rearrangement that occurred in the transplanted ectodermal plug was essentially typical for prospective ectodermal cells normally residing within Hensen's node. That is, transplanted ectodermal cells underwent lateralto-medial cell-cell intercalation and contributed to the ventral midline of the neural tube along its entire rostrocaudal extent. In most embryos, a notochord was reconstituted from host cells, despite the fact that Hensen's node — the prime source of prospective notochordal cells in intact embryos — was extirpated completely; however, a few embryos had long notochordal gaps. In such essentially notochordless embryos, the ventral midline of the neural tube still derived from grafted cells, but it failed to form a floor plate, providing further confirmation of the results of several previous studies that the notochord is required to induce the floor plate. Collectively, our results provide evidence that the rearrangement of ectodermal cells does not require the presence of a “trail” of prospective floor plate cells (laid down by the regressing Hensen's node), or of a notochordal substrate, and that the continued presence of an organizer per se, ostensibly Hensen's node, is not required. In addition, our results demonstrate that the rearrangement of cells still occurs in the absence of “boundaries” between ectodermal cells of different phenotypes (e.g., between cells of the floor plate and lateral walls of the neural tube). Finally, our results reveal further that the amount and direction of cellular rearrangement is not regulated in a cell-autonomous fashion, but rather it is determined by the overall magnitude and vector of the displacement of the community of rearranging cells within a developmental field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 17 (1995), S. 38-54 
    ISSN: 0192-253X
    Keywords: Endoderm ; epiblast ; mesoderm ; neural plate ; quail/chick chimeras ; somites ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The cells that are normally fated to form notochord occupy a region at the rostral tip of the primitive streak at late gastrula/early neurula stages of avian and mammalian development. If these cells are surgically removed from avian embryos in culture, a notochord will nonetheless form in the majority of cases. The origin of this reconstituted notochord previously had not been investigated and was the objective of this study. Chick embryos at late gastrulal early neurula stages were cultured, and the rostral tip of the primitive streak including Hensen's node was removed and replaced with non-node cells from quail epiblast to ensure that the cells normally fated to be notochord would be absent and that healing of the blastoderm would occur. Embryos were allowed to develop for 24 hr, and the presence and origin (host or graft) of the notochord were assessed using antibodies against notochord or quail cells. Two notochords typically developed; both were almost exclusively of host origin. The primitive streak, and in some cases adjacent tissues, was removed from another group of embryos in an attempt to estimate the mediolateral position and extent of the cells required to form reconstituted notochord. Additional experimental embryos with and without grafts were transected at various rostrocaudal levels in an attempt to estimate the rostrocaudal extent of the cells required to form reconstituted notochord. Finally, various levels of the primitive streak either were placed in a neutral environment (the germ cell crescent) or were grafted in place of the node. Collective results from all experiments indicate that the areas lateral to the rostral portion of the primitive streak, estimated to have a rostrocaudal span of less than 500 μm and a mediolateral extent of less than 250 μm, are critical for formation of the reconstituted notochord. Fate mapping and histological examination of this region identify 4 possible precursor cell populations. Further studies are underway to determine which of the 4 possible precursor cell types forms or induces the reconstituted notochord, and which tissue interactions underlie this change in cell fate. © 1995 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...