Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Pollution of ground water caused by excessive and uncontrolled use of nitrogen fertilizer is worrying. A recent example of such pollution has been observed in an agricultural basin in the province of Nevsehir, Turkey, where up to 900 kg ha−1 nitrogen fertilizer is used for growing potatoes in sandy soils under irrigation. Using nitrogen fertilizer in amounts that guarantee large yields without polluting ground water is essential. We present results of field experiments and numerical simulations involving 15N-labelled nitrogen fertilizer leaching. In the field, we monitored the movement of water and the distributions of nitrogen species within the soil–water–plant continuum. The detailed dynamics of the nitrogen cycle within the system were simulated. Simulations included calibration and validation of the nitrogen version of the LEACHM model (LEACHN, version 3) and long-term applications of the model. The model’s predictions of nitrogen fluxes under long-term use of fertilizer and irrigation were analysed. Nearly half of the applied ammonium-N was converted to nitrate-N during the growing season. With increasing additions of N the rate of plant uptake declined, while leaching increased significantly, and the fraction of nitrogen remaining in the soil profile increased only moderately. In long-term applications, a significant fraction of the applied fertilizer tended to accumulate after the first year in soil as the residual nitrogen not taken up by the crop. Accumulated residual nitrogen is converted to nitrate-N and leached rapidly from the soil profile during the wet season following the harvest. To reduce leaching of the residual nitrate, the rates, frequencies and timings of fertilizer application and irrigation must be scheduled in accordance with the plant growth periods and the hydraulic regime of the soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: acid deposition ; geochemical modeling ; industrial airemissions ; soil acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Soil acidification impacts arising from depositions of industrial air emissions may become a serious environmental concern. Currently, in the literature quantitative mechanistic modeling and the experimental acid neutralizing capacity (ANC) approach and a qualitative evaluation approach classifying soils into various levels of sensitivity to acid additions have been reported to assess the long-term soil acidification impacts due to industrial air emissions. Another alternative quantitative approach proposed by this study is the geochemical modeling approach that can be used to similate an ANC curve based on relevant soil chemistry data by calculating the equilibrium distributions of chemical species in the soil solution according to the specified geochemical processes. The purpose of this syudy was essentially to illustrate the potential applications and practical utility of the proposed geochemical modeling approach to assessing soil acidification impacts due to industrial air emissions. The application of the geochemical modeling apprach was illustrated by comparisons of the experimental and simulated ANC curves for a calcareous and a noncalcareous soil representing insensitive and sensitive soil cases, respectively. Results obtained from these comparisons reveal that, in terms of producing the ANC curve for the soil solution, the geochemical modeling approach seems to perform well and produce more reliable results for calcareous soil than for noncalcareous soil. However, the approach can also be used for noncalcareous soils when the air emission rates are low and may need further testing with additional measured data for a wide range of soils other than those presented in this study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...