Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 12 (2000), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Retinal γ-aminobutyric acid type C (GABAC) receptors consist of ρ subunits. Here we report our results from a competitive PCR and patch-clamp electrophysiology study quantifying ρ subunit message and characterizing GABAC receptor-mediated currents at different stages of mouse retinal development. Mouse ρ1 message is first detected at postnatal day 6 (P6), increases significantly until P9 and remains at this level through adulthood, whereas mouse ρ2 message does not appear until P9, peaks at P15 and remains at this level through adulthood. There is an approximate twofold excess of ρ1 compared to ρ2 message at most stages of development, which persists in adulthood. Functional GABAC receptors are detected in acutely dissociated bipolar cells of P9 or older mouse retina. Early in development (P9–10), GABAC receptors are composed solely of ρ1 subunits, but subsequently contain ρ1 and/or ρ2 subunits (by P11 and later). These findings are intriguing because the onset and rapid increase in ρ subunit transcription and functional expression match the initiation and active period of bipolar cell differentiation in retinal development as well as the stage of eye opening and initial visual experience in the rodent. The investigation of mouse ρ subunits here forms a basis for future studies on the role of GABAC receptors in retinal development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 12 (2000), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Functional coassembly of γ-aminobutyric acid (GABA)Cρ1 subunits with GABAA (α1, β2, and γ2S) or glycine (α1, α2, and β) subunits was examined using two-electrode voltage-clamp recordings in the Xenopus laevis oocyte expression system. To facilitate this study, we took advantage of the unique gating and pharmacological properties of two mutant ρ1 subunits, ρ1(T314A) and ρ1(T314A/L317A). When the ρ1(T314A) subunit was coexpressed with GABA γ2S, glycine α1 or glycine α2 subunits, GABA response properties were different from those of homomeric ρ1(T314A) receptors. Additionally, the sensitivity of heteromeric ρ1(T314A) and γ2S receptors to picrotoxinin (PTX) blockade of GABA-evoked responses was altered compared to that of homomeric ρ1(T314A) receptors. Changes in GABA response properties and picrotoxinin sensitivity were also observed when ρ1(T314A) subunits were coexpressed with wild-type ρ1 subunits. When ρ1(T314A/L317A) subunits were coexpressed with GABA γ2S, glycine α1 or glycine α2 subunits, suppression by GABA of spontaneously active current was reduced compared to that of homomeric ρ1(T314A/L317A) receptors. Recovery of the spontaneous current from inhibition by GABA for GABA ρ1(T314A/L317A)/γ2S heteromeric receptors displayed an additional component. Coinjection of wild-type ρ1 with γ2S cRNAs at a ratio of 1 : 1 resulted in a 〉 10-fold reduction in GABA-evoked current. Furthermore, coexpression of wild-type ρ1 and γ2S subunits was found to shift the GABA dose–response curve. Our results provide functional evidence that the GABACρ1 subunit can coassemble with the GABAAγ2S subunit, and, at least in its mutated form, ρ1 can also form heteromeric receptors with glycine α1 or α2 subunits in vitro.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 22 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which results from selective loss of upper and lower motor neurons. Mouse models of ALS, such as one carrying the G93A mutant of the human Cu-Zn superoxide dismutase gene[SOD1(G93A)], develop motor neuron pathology and clinical symptoms similar to those observed in ALS patients. There is compelling evidence that both direct and indirect glutamate toxicity contribute to the pathogenesis of motor neuron degeneration. However, the therapeutic effect of various glutamate receptor antagonists has not been clearly demonstrated. Memantine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist. It has been shown to protect neurons against NMDA- or glutamate-induced toxicity in vitro and in animal models of neurodegenerative diseases. In the current study, we have examined the therapeutic efficacy of memantine in an ALS mouse model carrying a high copy number of SOD1(G93A). Memantine treatment significantly delayed the disease progression and increased the life span of SOD1(G93A) mice, from 121.4 ± 5.5 to 129.7 ± 4.5 days (P = 0.032). Furthermore, NMDA receptor subunits were reliably detected in the spinal cord of SOD1(G93A) mice and their expression levels were similar to those in the wild-type littermate control. Therefore, the neuroprotective effect of memantine in SOD1(G93A) mice is most probably due to the inhibition of spinal cord NMDA receptors. In view of the long-term usage of memantine for dementia patients, with excellent tolerance and safety, these data suggest that memantine may be used in ALS patients alone or in combination with other therapies to prolong survival.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...