Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Zinc aluminate (ZnAl2O4) particles have been synthesized by the hydrothermal method using NH3·H2O as a pH adjustment mineralizer. Experimental results showed that ZnAl2O4 particle size was dependent on the precursor pH, and could be controlled through pH adjustment. It was 5.5, 11.5, and 27 nm when the precursor pH was 8.2, 9.3, and 10.5, respectively. On the other hand, the particle size distribution changed broader with increase in pH. These differences were attributable to the different NH3·H2O function. NH3·H2O was mainly used as a base at lower pH (〈9.0), while its complex function predominated at higher one (〉9.5). From thermodynamic viewpoint, the rate-limiting steps were dissolution of Al(OH)3 and γ-AlO(OH) to Al(OH)4− at lower and higher pH, respectively. The newly formed γ-AlO(OH) with high reactivity was the critical factor in the synthesis of bimodal particles. Higher temperature treatment of γ-AlO(OH) could decrease the reactivity, and could be used as an aluminum source for synthesis uniform ZnAl2O4 particles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Well-crystallized cerium(IV) oxide (CeO2) powders with nanosizes without agglomeration have been synthesized by a hydrothermal method in an acidic medium by using cerium hydroxide gel as a precursor. The relationship between the grain size, the morphology of the CeO2 crystallites, and the reaction conditions such as temperature, time, and acidity of the medium was studied. The experiments showed that with increasing reaction temperature and time, the CeO2 crystallites grew larger. The crystallites synthesized in an acidic hydrothermal medium were larger and had a more regular morphology than the ones synthesized in a neutral or alkaline medium when the reaction temperature and time were fixed. The CeO2 crystallites synthesized in an acidic medium were monodispersed; however, there was vigorous agglomeration among the grains synthesized in a neutral or alkaline medium. It was demonstrated that the hydrothermal treatment was an Ostwald ripening process and the acidity (pH) of the used hydrothermal medium played a key role in the dissolution of smaller grains. It is proposed that the dissolution process can control the kinetics of the growth of larger grains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: ZnAl2O4-seeded CoAl2O4, with a core-shell structure, has been prepared under hydrothermal conditions when the Co2+ salt solution is substituted by 10% Zn2+ as a precursor. The ZnAl2O4 seed is generated during the synthesis process. The seeding process can decrease the synthesis temperature from 245° to 230°C and the particle size from 67 to 20 nm. The process can economize the consumption of Co2+ and control the particle size effectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...