Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: BaTiO3 (BT) nanoparticles were prepared by the hydrothermal technique using different starting materials and the microstructure examined by XRD, SEM, TEM and HRTEM. X-ray diffraction and electron diffraction patterns showed that the nanoparticles were the cubic BaTiO3 phase. The BT nanoparticles prepared from the starting materials of as-prepared titanium hydroxide and barium hydroxide have spherical grain morphology, an average size of 65 nm and a fairly narrow size distribution. A uniform diffraction contrast across each single grain is observed in the TEM images, and the clear lattice fringes (with d110 = 0.28 nm) observed in HRTEM images reveal that well-crystallized BT nanoparticles are synthesized by the hydrothermal method. The edges of the particles are very smooth, with no surface steps. BT nanoparticles with average grain size of 90 nm, synthesized using barium hydroxide and titanium dioxide as the starting materials, show surface facets. In this case a bimodal size distribution of large faceted and smaller particles is observed. Diffraction contrast variation across the particles caused by high strains within the particles is clearly observed. The high strains obviously stem from structural defects formed during hydrothermal synthesis, presumable in the form of lattice OH− ions and their compensation by cation vacancies. HRTEM images demonstrate that surface facets parallel to the (100) and (110) planes and small islands with 3 ~ 4 atomic layer thickness are frequently observed around the edge of the particles
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Journal of metastable and nanocrystalline materials Vol. 23 (Jan. 2005), p. 105-108 
    ISSN: 1422-6375
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: By means of solid-state reactions method, ZnSnO3 nanoparticles were prepared in the reactions of ZnCl2 and SnCl4·5H2O with KOH in the presence of added KCl crystal, and were assembled into 3-D aggregates with tetragonal-like shape in the size range of 20-200 nm. The products were characterized by powder X-ray diffraction (XRD), and the microstructures of the samples were investigated by transmission electron microscope (TEM), selected area electron diffraction (SAED) and high-resolution transmission electron microscope (HRTEM) in detail. Probable mechanisms for the formation of such tetragonal-like shape of ZnSnO3 3-D aggregates are proposed
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Journal of metastable and nanocrystalline materials Vol. 23 (Jan. 2005), p. 235-238 
    ISSN: 1422-6375
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Chestnut-bur-like rutile titania assemblies are successfully synthesized by a sonochemical method. Scanning electron microscopy and transmission electron microscopy analyses reveal that the assemblies are formed by radial coagulation of rutile acicular nanocrystals. Effects of experimental conditions on the phase and structure of the products are also presented
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...