Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Cisplatin ; Antitumor drugs ; Nuclear magnetic resonance ; Molecular modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The structure of the second major adduct formed by the antitumor drug cisplatin with DNA, the intrastand cis–Pt(NH3)2{d(ApG)N7–N7} chelate (A*G*), has been investigated using a double-stranded nonanucleotide, d(CTCA*G*CCTC)-d(GAGGCTGAG), by means of NMR and molecular modeling. The NMR data allow us to conclude that the oligonucleotide is kinked at the platinated site towards the major groove in a way similar to that observed elsewhere for the G*G*-crosslink in d(GCCG*G*ATCGC)-d(GCGATCCGGC). The main difference concerns the position of the thymine T(15) complementary to the platinated adenine A*(4). It remains stacked on its 5′-neighbor C(14), corresponding to the "model E" described previously, whereas in the G*G*-adduct, the cytosine facing the 5′-G* was found to oscillate between the 5′-branch ("model E") and the 3′-branch ("model C") of the complementary strand. Two "E-type" models are presented which account for the particular NOE connectivity and for two remarkable upfield NMR signals: those of the H2′ proton of the cytidine C(3) 5′ to the A*G* chelate, and of the H3 imino proton of T(15), the base complementary to A*(4). The former shift is attributed to shielding by the destacked A*(4) base, whereas the latter is accounted for by a swinging movement of the T(15) base between two positions where the imino Watson-Crick hydrogen bond with A*(4) remains intact and the amino hydrogen bond is disrupted, or vice versa. Possible implications of the structural difference between the AG and GG adducts of cisplatin in the mutagenic properties of the two adducts are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 310-319 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A molecular mechanics energy minimizer is presented whose main features are the “floating blocks” and “isles” option, the “a-NOE” distance inequality constraints and the variable storage first derivative minimization method. The program possibilities are illustrated by examples of molecular docking, energy barrier estimation, modeling of infinite structures, and DNA bending simulations.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...