Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0196-9781
    Keywords: Enzyme hydrolysis ; K562(S) cell differentiation ; Receptor binding ; hydrolysis by-products uptake
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 81 (1990), S. 313-317 
    ISSN: 1432-1106
    Keywords: Valproic acid ; Ionic currents ; Cerebral cortex ; Patch clamp ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Rat neocortical neurons in culture were subjected to the whole cell mode of voltage clamping under experimental conditions designed to study Na+, Ca{2su+} and K+ currents in isolation. Following pharmacological blockade of most of the Ca2+ and K+ channels, depolarizing commands which brought the membrane potential from — 80 to +10 mV elicited an inward current. This current was sensitive to tetrodotoxin (TTX) and was therefore caused by the opening of voltage-dependent channels permeable to Na+. Extracellular application of the antiepileptic drug valproic acid (VPA, 0.2–2mM) reduced in a dose-related, reversible way this Na+ current. VPA also evoked an increase of the voltage-dependent inward current recorded in the presence of TTX and thus presumably carried by Ca2+; this effect was seen in the presence of doses of VPA larger than 0.5 mM and was not reversible. Two types of outward K+ currents evoked by depolarizing steps in the presence of Na+ and Ca2+ channels blockers were not affected by VPA (up to 5 mM). Our data indicate that doses of VPA that are within the range present when it is used as an anticonvulsant, can influence inward currents generated by rat neocortical cells in culture. The reduction of the Na+, inward current is in line with findings obtained in mouse neurons by using standard intracellular recording techniques. This effect might represent an important mechanism of action for VPA in neocortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...