Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 5.2007, 1, A106 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: The new concept of a rotating fluidized bed in a static geometry was numerically and experimentally studied. The particle bed can be both tangentially and radially fluidized by injecting the fluidization gas tangentially in the static fluidization chamber via multiple gas inlet slots located in its outer cylindrical wall. The tangential fluidization of the particles induces a rotating motion of the particle bed. As a result of the particle bed rotational motion, the solids experience a radially outwards centrifugal force. A radially inwards gas-solid drag force and radial fluidization of the particle bed can be introduced by forcing the fluidization gas to leave the fluidization chamber via a chimney with one or multiple gas outlet slots, positioned at the axis of the fluidization chamber. The solids can be continuously fed and removed in and out of the fluidization chamber via solids inlet and outlet holes in the front or back ends of the fluidization chamber.The fluidization patterns of low-density polymer particles with a large diameter and of high-density salt particles with a small diameter were experimentally studied in a 24-cm diameter, 13.5-cm long non-optimized static fluidization chamber at different solids loadings. Scale-up to a 36-cm diameter fluidization chamber was also studied. With both types of particles, a rotating fluidized bed and an acceptable gas-solid separation was obtained provided that the solids loading was sufficiently high. Slugging and channeling and a non-uniform distribution of the gas over the gas inlet slots to the fluidization chamber may occur at low solids loadings and can be detected via well-chosen pressure measurements. The fluidization patterns observed in the same fluidization chamber were completely different with the polymer particles and with the salt particles. The polymer particles tend to form a dense and uniform bed, its behavior being mainly characterized by tangential fluidization. The salt particles tend to form a less dense, bubbling fluidized bed that is both tangentially and radially fluidized.Computational fluid dynamics simulations give an improved insight in the gas and solid phase flow pattern.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...