Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials synthesis and processing 7 (1999), S. 335-347 
    ISSN: 1573-4870
    Keywords: Compaction ; impact ; SHS ; supersonic propagation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Mixtures of reactive powders can be ignited in several ways. These systems have high activation energies and significant preheating is required. Traditionally conduction has been considered as the main form of preheating and self-propagating velocities of the order of a few millimeters to a few centimeters per second are typical. Ultrafast modes of propagation are observed through the application of initial pressure and particle velocity to the system, which cause significant heating by compression. The model also includes the compaction of porous preforms. The constitutive relations have been amended to accommodate yielding and dilatation. Dissipative forces contribute to preheating and replace thermal conduction as the primary mode of activation. The model is pseudo-homogeneous insofar as no distinction is made between physical properties of different species, as well as differences in their response to shock waves (e.g., local differences in particle velocities).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 1341-1345 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 3458-3465 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A discrete model is used to study the behavior of shock propagation, crack formation, and crack propagation of a thin ceramic plate. This plate represents a wall of a channel in a monolithic structure. The model involves a spring-node formulation on a rectangular geometry, which approaches the continuum model correctly when the Poisson ratio is taken as 0.25. Viscous damping is also included. Shock waves originate from perturbations due to local ignition (hot spots), sudden quenching or other changes in operating and driving conditions. The shock wave propagates from the perturbed region. Internodal displacements are used to calculate strains, and the values are compared to a maximum strain associated with failure. Spring constants are set to zero when the maximum strain is exceeded. Reflection of compressional waves from free boundaries as tensional waves leads to enhanced crack formation near the free boundary. Shock waves attenuate much faster when the plate is precracked. Propagation velocities are lower for precracked plates, due to a decrease in (effective) Young's modulus. Velocities of pure compressional and shear waves compare quite well with theoretical values.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...