Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: adiabatic pulses ; chemical exchange ; CPMG ; DNA-binding protein ; off-resonance relaxation ; protein dynamics ; retinoid X receptor ; zinc finger
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Slow protein dynamics can be studied by 15N spin-echo (CPMG) and off-resonance rotating frame relaxation through the effective field dependence of the exchange-mediated relaxation contribution. It is shown that, by a combination of these complementary techniques, a more extended sampling of the microsecond time scale processes is achieved than by either method alone. 15N R2 and improved off-resonance R1ρ experiments [Mulder et al. (1998) J. Magn. Reson., 131, 351–357] were applied to the 9- cis-retinoic acid receptor DNA-binding domain and allowed the identification of 14 residues exhibiting microsecond time scale dynamics. Assuming exchange between two conformational substates, average lifetimes ranging from 37 to 416 μs, and chemical shift differences of up to 3 ppm were obtained. The largest perturbation of tertiary structure was observed for the second zinc finger region, which was found to be disordered in the solution structure [Holmbeck et al. (1998) J. Mol. Biol., 281, 271–284]. Since this zinc-coordinating domain comprises the principal dimerization interface for RXR in a wide repertoire of complexes with different hormone receptors to their cognate response elements, this finding has important implications for our understanding of nuclear receptor assembly on DNA direct repeats. The flexibility observed for the dimerization domain may explain how RXR, through the ability to adaptively interact with a wide variety of highly homologous partner molecules, demonstrates such a versatile DNA-binding repertoire.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...