Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 22 (1980), S. 1543-1565 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Enzymatic hydrolysis of insoluble soybean protein by a protease enzyme produced by Penicillium duponti K 1104, was investigated in a batch reactor. The reaction conditions were 30-55°C and pH 3.4-3.7. The mechanism of solubilization of the insoluble protein by the Penicillium duponti enzyme was deduced from a series of experiments. Kinetic models were developed that involved adsorption followed by peptic digestion of protein, inhibition of low-molecular-weight peptides, and enzyme deactivation. The uncoupled kinetic parameters were estimated using the Marquardt nonlinear parameter estimation algorithm. A bang-bang production of soluble and partially soluble protein is suggested for higher productivity. The essential amino acids pattern of the enzyme-Hydrolyzed soy protein was comparable with the unhydrolyzed protein isolate. Aggregation of the soluble protein for an extended time was observable. The low-molecular-weight soluble protein was incorporated into noncarbonated beverages. The amount of protein that could be incorporated into a can of 355 ml noncarbonated beverage, without observable changes in the optical density and also aggregation of the protein, was 2.5 g soluble protein. Beverages with caramel color showed excessive decrease in optical density and precipitation. The kinetics and diffusion in a multipore immobilized-enzyme recycle reactor will be considered in part II of this series.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Penicillium duponti enzyme was immobilized on reconstituted collagen by macromolecular complication, impregnation, and covalent crosslinking techniques. The immobilization of the enzyme on collagen has a twofold purpose: (1) providing a protein microenvironment for the proteolytic enzyme; and (2) extending the useful life the enzyme once immobilized on the collagen matrix. Two types of collagen were used, one produced by the United States Department of Agriculture and the other produced by FMC. The USDA collagen contained unhydrolyzed telepeptide linkages and required pretreatment to reduce collagenaselike activity of the enzyme. Activity analysis of the immobilized enzyme complex showed that membranes with enzyme loading less than 10 mg enzyme/g of wet membrane in the reactor were dimensionally stable. The degree of crosslinking was an important parameter. Membranes with structural opening up to three times the initial dry thickness were found to be the maximum limit for controlled release of enzyme from the collagen membrane during enzymatic reaction. Higher activities and better stability of the enzyme in collagen membrane were found for covalent crosslinking of the enzyme to treated collagen films. The hydrolysis of soybean vegetable protein with the immobilized enzyme in a recycle reactor at enzyme loading of mg/g of wet membrane at 40°C, pH 3.4, produced 56.5% of soluble protein in 10h. The production is equivalent to 1.84 h total contact time between the substrate and the immobilized enzyme. The average productivity based on a stable enzyme activity and 20g of dry membrane was 329 mg of protein/g/mg of active enzyme immobilized. The productivity of the free enzyme in a batch reactor was 62.5 mg protein/h/mg enzyme.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 156-166 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental investigation is by far the most effective approach for studying the behavior of physical systems. However, an enzymatic solubilization of vegetable protein is a complex combination of intrinsic problems, of which many are not easily adaptable to experimental investigation. Experimental designs to study enzyme vegetable protein reactions yield data which describe the extramembraneous activity of the immobilized enzyme. In a continuous recycle immobilized enzyme reactor, the microenvironment concentration of the substrate or product in the membrane phase, or the concentrations along the reactor axial length in the bulk phase are not discernible to the experimenter. However, the knowledge of such concentration profiles is important in weighing the significance of such factors as intermembrane diffusion, enzyme loading, wet membrane size, and the mode of operation of the reactor. The simulation of mathematical models, which describe the physical system within the constraints imposed, yields information which is vital to the understanding of the process occurring in the reactor. The kinetics and diffusion of an immobilized thermophilic Penicillium duponti enzyme at pH 3.4-3.7 and 50°C was modeled mathematically. The kinetic parameters were evaluated by fitting a model to experimental data using nonlinear regression analysis. Simulation profiles of the effects of reactor geometry, substrate concentration, membrane thickness, and enzyme leading on the hydrolysis rate are presented. From the profiles generated by the mathematical model, the best operational reactor strategy is recommended.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...