Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Key words: Numerical simulation, summer monsoon, circulation, land surface, parameterization.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 53 (1994), S. 33-49 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary Two numerical experiments are performed using a nested grid regional model to study the performance of the Kuo and the Betts-Miller cumulus parameterization schemes in simulating the rainfall during an active monsoon period. Results indicate that the monsoon circulation features, such as the Somali jet and monsoon depression are better simulated with the Kuo scheme. With the Kuo scheme, predicted intensity and associated rainfall of the monsoon depression are in good agreement with the observations. Uncertainty in the adjustment parameters in the Betts-Miller scheme appears to have lead to the poor prediction of rainfall. Also, the Betts-Miller scheme showed considerable sensitivity to the convergence in the lower troposphere in the initial conditions over the Arabian Sea, leading to a prediction of a spurious intense tropical cyclone. This cyclone replaced the normal heat-low over the desert region. Rainfall distribution and its maximum along the west coast of India were predicted better with the Kuo scheme. Area-averaged convective heating rates indicated that the cumulus convection is deeper and more intense with the Kuo scheme. Also, area averaged evaporation rates far exceeded the rainfall rates with the Betts-Miller scheme while with the Kuo scheme these rates are in balance after the spinup period. Forecast erros in the zonally averaged specific humidities indicate that the model atmosphere is more humid with the Betts-Miller scheme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 69 (1998), S. 101-118 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary A one-dimensional chemistry-boundary layer model was used to study the effects of differing representations of atmospheric boundary layer (ABL) processes on simulated concentrations of passive and chemically reactive tracers. Two local- and two nonlocal-closure ABL schemes were used to perform numerical simulations during convective conditions in the ABL. Observational data from the First International Statellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) were used to provide initial meteorological conditions while representative chemical concentrations and surface and elevated emission rates were used to provide initial chemical conditions and chemical sources to the one-dimensional model. Two sets of numerical simulations were performed using the four ABL schemes. The first set simulated bottom-to-top mixing characteristics, and the second set simulated top-to-bottom mixing characteristics. Model simulations were performed for 12h starting from 0700LT 11 July 1987. Our analysis indicate that the simulated concentrations of both passive and reactive chemical species were sensitive to the type of ABL scheme used to represent turbulent mixing processes. Characteristic features associated with each scheme (e.g., growth and intensity of mixing in the ABL) contributed to the differences among the simulated species concentrations. For some of the chemical species these differences were large, particularly in the surface layer and in the interfacial layers of the ABL. In turn, differences caused by the differing mixing representations resulted in different chemical production/destruction rates. As a consequence, the simulated species concentrations differed among the simulations. We also found that chemical species concentrations were more sensitive to the type of ABL scheme in the bottom-to-top mixing simulations than in the top-to-bottom simulations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...