Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 2281-2288 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Density functional theory has been used to study the interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes. Static calculations allowing for different degrees of structural relaxation are performed, in addition to dynamical simulations. Molecular physisorption inside and outside the nanotube walls is predicted to be the most stable state of those systems. The binding energies for physisorption of the H2 molecule outside the nanotube are in the range 0.04–0.07 eV. This means that uptake and release of molecular hydrogen from nanotubes is a relatively easy process, as many experiments have proved. A chemisorption state, with the molecule dissociated and the two hydrogen atoms bonded to neighbor carbon atoms, has also been found. However, reaching this dissociative chemisorption state for an incoming molecule, or starting from the physisorbed molecule, is difficult because of the existence of a substantial activation barrier. The dissociative chemisorption deforms the tube and weakens the C(Single Bond)C bond. This effect can catalyze the shattering and scission of the tube by incoming hydrogen molecules with sufficient kinetic energy. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 8114-8119 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Density functional theory has been used to study the adsorption of molecular H2 on a graphene layer. Different adsorption sites on top of atoms, bonds and the center of carbon hexagons have been considered and compared. We conclude that the most stable configuration of H2 is physisorbed above the center of a hexagon. Barriers for classical diffusion are, however, very small. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 62 (1997), S. 29-45 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The H2 interaction with the Pd dimer and trimer were studied using multiconfigurational self-consistent field (MC-SCF) calculations with the relativistic effective core potential (RECP); the correlation energy correction was included in the extended multireference configuration interaction (MRCI), variational and perturbative to second order. Here, we considered the Pd2 first six states: 3Σ+u, 1Σ+g, 3Πg, 3Δxy, 1Σ+u, and 3Σ+g. For them, the four geometrical approaches included were the side-on H2 toward Pd2, for the hydrogen molecule in and out the Pd dimer plane; the perpendicular end-on H2 toward Pd2; and the perpendicular end-on Pd2 to H2. The Pd2 ground state is 3Σ+u, which only captures H2 in the C2v end-on approach, softly relaxing the H(SINGLE BOND)H bond. The closed-shell 1Σ+g captures the H2 molecule in all the approaches considered: The side-on approach of this state presents deep wells and relaxes the H(SINGLE BOND)H bond, and the end-on approach captures H2 with a relatively longer H(SINGLE BOND)H distance and also a deep well. The 3Πg state was the only one which did not capture H2. For the triangular Pd3 clusters, H2 was approached in the C2v symmetry in and out of the Pd3 plane. In the triangular case, H2 was absorbed in both spin states, with deep wells and relaxing the H(SINGLE BOND)H distance. The linear Pd3 singlet and triplet states capture outside of the Pd3 and break the H(SINGLE BOND)H bond. © 1997 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...