Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 442-446 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A diffusion equation describing phase separation during co-deposition of a binary alloy is derived, and solved in the limit of dominant surface diffusion. Linear stability analysis yields results similar to bulk spinodal decomposition, except that long, and possibly all, wavelength are stabilized. Decomposition into two phases is investigated by solving the diffusion equation for lamellar and cylindrical symmetry. For the lamellar geometry, typically observed for near-equal volume fractions, the diffusion equation does not yield wavelength selection criteria. These can be obtained if free energy minimization is assumed. For the cylindrical geometry, solutions for small volume fractions yield domain dimensions proportional to the deposition-rate dependent surface diffusion length.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 1707-1715 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of Monte Carlo simulation of phase separation during binary film coevaporation are presented for a range of deposition conditions. The model employed assumes that phase separation occurs through surface interdiffusion during deposition, while the bulk of the film remains frozen. Simulations were performed on A-B alloy films having compositions of 10 and 50 vol % solute. For both film compositions, the lateral scale of the domains at the film surface evolves to a steady-state size during deposition. A power-law dependence of the steady-state domain size on the inverse deposition rate is obtained. Simulation microstructures at 50 vol % compare favorably with those obtained in a previous experimental study of phase separation during coevaporation of Al-Ge films of the same composition. Results of simulations performed at 10 vol % are compared with the predictions of a theoretical model based on the above assumptions. The power-law exponent obtained from simulations at 10 vol % is different than that predicted by the theoretical model. The reasons for this difference are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 3144-3149 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The enthalpies of formation of metastable fcc Ag-Cu solid solutions, produced by ball milling of elemental powders, were determined by differential scanning calorimetry. Experimental thermodynamic data for these metastable alloys and for the equilibrium phases are compared with both calculation of phase diagrams (CALPHAD) and atomistic simulation predictions. The atomistic simulations were performed using the free-energy minimization method (FEMM). The FEMM determination of the equilibrium Ag-Cu phase diagram and the enthalpy of formation and lattice parameters of the metastable solid solutions are in good agreement with the experimental measurements. CALPHAD calculations made in the same metastable regime, however, significantly overestimate the enthalpy of formation. Thus, the FEMM is a viable alternative approach for the calculation of thermodynamic properties of equilibrium and metastable phases, provided reliable interatomic potentials are available. The FEMM is also capable of determining such properties as the lattice parameter which are not available from CALPHAD calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 955-962 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Metastable solid solutions of Fe and Cu, which are immiscible in equilibrium, have been formed using high-energy ball milling of elemental powder mixtures. Single-phase face-centered-cubic (fcc) solid solution was obtained for 0〈x≤60, and body-entered-cubic (bcc) solid solution for 75≤x〈100. The transition from fcc to bcc occurred near x=70, where a mixture of fcc and bcc phases was obtained. The enthalpy of transformation to equilibrium was measured using differential scanning calorimetry. The average atomic volume of the phases exhibits a positive deviation from Vegard's law, in qualitative agreement with the large positive enthalpy of mixing in this system. The magnetic moments and Curie temperatures for the metastable solid solutions have been determined and compared with those reported for Fe-Cu alloys formed by vapor deposition. Calculations of the formation enthalpy (ΔH) and free energy (ΔG) have been performed based on calphad data, with corrections based on our magnetization measurements. The calculated ΔG results are used to explain the observed fcc-bcc transition under polymorphous constraints.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 59 (1991), S. 2535-2537 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report observations of two distinct types of phase-separated microstructures in co-deposited Al-Ge films. In the initial stages of growth, lateral phase separation is observed, with a temperature dependence consistent with surface diffusion. As the film grows thicker, the Ge-rich phase becomes increasingly buried, and a transverse phase-separated microstructure results, consisting of an Al-rich layer covering a Ge-rich layer. This observation is explained in terms of the competition between surface and interfacial free energies. We discuss the kinetic aspects of the phase separation process, and the resulting behavior in the thick-film limit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Nuclear Materials 205 (1993), S. 361-373 
    ISSN: 0022-3115
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Nuclear Materials 211 (1994), S. 70-84 
    ISSN: 0022-3115
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...