Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 11 (1993), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract ‘Peak’metamorphic carbon isotope fractionations between calcite and graphite (ΔCal–Gr) in marbles and calc-silicates from the Cucamonga granulite terrane (San Gabriel Mountains, California) range from 3.48 to 2.90%. The data are used to test three previously published calibrations of the calcite–graphite carbon isotope thermometer. An empirical calibration of the calcite–graphite carbon isotope thermometer gives temperatures of 700–750°C; a theoretical–experimental calibration of the system gives temperatures of 760°–870°C; an experimental calibration gives temperatures of 870–1300°C. Temperatures calculated using the empirical calibration are in agreement with those calculated from garnet-based cation exchange thermometry when uncertainty is considered. Temperatures calculated using the theoretical–experimental calibration overlap the upper range of cation exchange thermometry temperatures and range to 50°C higher. The experimental calibration yields temperatures from 50 to 480°C higher than those from cation exchange thermometry. Moreover, temperatures from the experimental calibration are also inconsistent with mineral and melt equilibria in the granulite phase assemblage.Despite the better agreement between cation exchange thermometry and the empirical calibration of the calcite–graphite system, temperatures calculated using the theoretical–experimental calibration may be real peak metamorphic temperatures. If retrograde diffusion partially reset garnet-based cation exchange thermometers by c. 50°C, then the cation exchange temperatures are consistent with those from the theoretical–empirical calibration. Thermometric evidence from biotite dehydration melting equilibria is consistent with either the empirical calibration if melting was fluid-present, or the theoretical–experimental calibration if melting was fluid-absent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 10 (1992), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Mid-Cretaceous granulite gneisses crop out in a narrow belt in the Cucamonga region of the south-eastern foothills of the San Gabriel Mountains, southern California. Interlayered mafic granulites and pelitic, carbonate, calc-silicate and quartzofeldspathic metasediments record hornblende granulite subfacies metamorphism at approximately 8 kbar and 700–800°C. Regional deformation and formation of banded gneisses ceased by c. 108 Ma. although mafic-intermediate magmatism and high-grade metamorphism continued locally as late as c. 88 Ma. Garnet zoning in metapelitic gneisses suggests that peak metamorphism was followed locally by a period of near-isobaric cooling, but this interpretation requires diachronous cooling of the granulite belt which cannot be demonstrated without detailed thermo-chronological data. It is more likely that the entire terrane remained at granulite facies P–T conditions until 88 Ma, followed by rapid uplift associated with juxtaposition against adjacent middle and upper crustal arc terranes. Uplift occurred between c. 88 and 78 Ma at rates of approximately 1–2 km Ma-1. The geotectonic evolution of the Cucamonga granulites is similar to mid-Cretaceous high-P granulites in the Sierra Nevada and Salinian block of central California. Late Cretaceous uplift common to these granulites may provide an important tectonic link between dismembered Mesozoic batholithic terranes in the California Cordillera.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...