Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 475-480 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction products of the OH radical with 2-ethoxyethyl acetate (EEA, CH3C(O)OCH2CH2OCH2CH3) have been investigated. 1,2-Ethanediol acetate formate (EAF, CH3C(O)OCH2CH2OC(O)H) and ethyl formate (EF, HC(O)OCH2CH3) were identified as the two main products. A third product, ethylene glycol diacetate (EGD, CH3C(O)OCH2CH2OC(O)CH3), was also observed. EAF, EF, and EGD formation yields were determined to be 0.37 ± 0.03 and 0.328 ± 0.018 and 0.040 ± 0.005, respectively. Proposed reaction mechanisms are discussed and compared with these data. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 29 (1997), S. 637-644 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of ethyl 3-ethoxypropionate (EEP, CH3CH2(SINGLE BOND)O(SINGLE BOND)CH2CH2C(O)O(SINGLE BOND)CH2CH3). EEP reacts with OH with a bimolecular rate constant of (22.9±7.4)×10-12 cm3 molecule-1s-1 at 297±3 K and 1 atmosphere total pressure. In order to more clearly define EEP's atmospheric reaction mechanism, an investigation into the OH+EEP reaction products was also conducted. The OH+EEP reaction products and yields observed were: ethyl glyoxate (EG, 25±1% HC((DOUBLE BOND)O)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (2-formyl) acetate (EFA, 4.86±0.2%, HC((DOUBLE BOND)O)(SINGLE BOND)CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (3-formyloxy) propionate (EFP, 30±1%, HC((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl formate (EF, 37±1%, HC((DOUBLE BOND)O)O(SINGLE BOND)CH2CH3), and acetaldehyde (4.9±0.2%, HC((DOUBLE BOND)O)CH3). Neither the EEP's OH rate constant nor the OH/EEP reaction products have been previously reported. The products' formation pathways are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. © 1997 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 745-752 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of +2-butanol (2BU, CH3CH2CH(OH)CH3) and 2-pentanol (2PE, CH3CH2CH2CH(OH)CH3). 2BU and 2PE react with OH yielding bimolecular rate constants of (8.1±2.0)×10-12 cm3molecule-1s-1 and (11.9±3.0)×10-12 cm3molecule-1s-1, respectively, at 297±3 K and 1 atmosphere total pressure. Both 2BU and 2PE OH rate constants reported here are in agreement with previously reported values [1-4]. In order to more clearly define these alcohols' atmospheric reaction mechanisms, an investigation into the OH+alcohol reaction products was also conducted. The OH+2BU reaction products and yields observed were: methyl ethyl ketone (MEK, (60±2)%, CH3CH2C((DOUBLEBOND)O)CH3) and acetaldehyde ((29±4)% HC((DOUBLEBOND)O)CH3). The OH+2PE reaction products and yields observed were: 2-pentanone (2PO, (41±4)%, CH3C((DOUBLEBOND)O)CH2CH2CH3), propionaldehyde ((14±2)% HC((DOUBLEBOND)O)CH2CH3), and acetaldehyde ((40±4)%, HC((DOUBLEBOND)O)CH3). The alcohols' reaction mechanisms are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. Labeled (18O) 2BU/OH reactions were conducted to investigate 2BU's atmospheric transformation mechanism details. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground level ozone-forming potential calculations (incremental reactivity) [5]. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 745-752, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...