Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Research on the formation of a hot hydrogen working fluid, which may be used in multiple concentric solid-density liner implosions, is reported. In such implosions, an axisymmetric outer liner is driven by a multi-megamp axial discharge, and a coaxial inner liner is driven by a working fluid contained between the liners. The fluid is shocklessly compressed to high pressure as the outer liner implodes around it. In the work reported here a 10 to 100 Torr pressure, hydrogen filled coaxial gun discharge was used to inject plasma into a diagnostic chamber simulating an interliner volume. Spectroscopically determined electron densities of between 1017 and 1018 cm−3 and electron temperatures in the 0.5–2.0 eV range were obtained with a fair degree of reproducibility and symmetry. Two-dimensional, time-dependent magnetohydrodyna- mic computer simulations of the working fluid formation experiment have been performed, and the computations suggest that the present experiment achieves electron number densities and temperatures at the lower extreme of these limits, and neutral densities ∼ 0.3–1.0 ×1019 cm−3. The simulations further suggest that the upper range, and beyond, can be achieved in a more energetic version of the present experiment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named marauder (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer–Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7–15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...