Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5125
    Keywords: nutrient limitation ; enrichment experiment ; phytoplankton growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 25 (1993), S. 957-967 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A fast-flow apparatus with mass spectrometric detection was used to study the system F + CHFO between 2 and 3.5 mbar total pressure. The rate constant of the primary reaction was evaluated directly to yield at 298 K k(1) = (8.8 ± 1.4) * 10-13 cm3 * molecule-1 * s-1. Numerical modelling was used to determine the rate constant at 298 K of the subsequent reaction CFO + CFO → CF2O + CO: k(2) = (4.9 ± 2.0) * 10-11 cm3 * molecule-1 * s-1. The possible occurrences of secondary reactions, CFO + F + M → CF2O + M, and CFO + F2 → CF2O + F, can be excluded under the present conditions. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 329-333 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate coefficients for the reactions CHFO+F, CFO+F and the self-reaction of CFO were determined over the temperature range of 222-298 K. A computer controlled discharge-flow system with mass spectrometric detection was used. The results are expressed in the Arrhenius form (with energies in J):CHFO+F→CFO+HF:k1(T)=(9.7±0.7)·10-12 exp[-(5940±150)/RT] cm3 molecule-1 s-1CFO+F+M→CF2O+M:FORMULA DISC=“MATH”〉k2(T)=(2.60±1.17)·10-10 exp[-(10110±1250)/RT cm3 molecule-1 s-1FORMULACFO+CFO→CF2O+CO:k3(T)=(3.77±2.7)·10-10 exp[-(8350±2800)/RT] cm3 molecule-1 s-1© 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 329-333, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...