Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 34 (1999), S. 614-629 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The two Alpine orogenic phases of the Eastern Alps, in the Cretaceous and in the Tertiary, were both accompanied by the formation of mineral deposits. However, subduction-related magmatic belts as well as the typical “Andean” ore deposits are missing. Therefore, the role of metamorphism in East Alpine metallogeny was tentatively explored for more than 60 y, although for a long time without tangible results. Microthermometric, geochemical and isotopic investigations of fluid inclusions from selected Alpine mineral deposits presented allow a preliminary confirmation of the involvement of metamorphic fluids in their origin. Deposits which were formed immediately after the first, Cretaceous orogeny, were produced at high pressures by fluids of very high salinity and high density, and with an isotopic composition of the water falling into the metamorphic field. These fluids are best understood as products of metamorphic de-volatilization of rocks of the subducted South Pennine domain. In contrast to this, the deposits formed after the second, Tertiary orogeny, originated at relatively low pressures from fluids with an appreciable content of CO2 and of low to moderate salinities. Isotopic compositions of this carbon indicate a deep crustal or even mantle source for CO2, while the water is isotopically more heterogeneous and may have mixed sources, both surficial and metamorphic. Tectonic control of these mineralizations is late-orogenic trans-tensional faulting, which exposed hot metamorphic rocks to fluid convection along brittle structures. These deposits conform best to the model of metamorphogenic metallogenesis by retrograde leaching, although ponded metamorphic fluids and mantle volatiles may also have been involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 84 (1995), S. 831-842 
    ISSN: 0016-7835
    Keywords: Key words Austroalpine Crystalline Complex ; Tertiary mineralization ; Hydrothermal veins ; Stable isotope analyses ; Microthermometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The specularite deposit at Waldenstein is an epigenetic replacement/vein-type hematite mineralization with distinct alteration zones. It is situated in highly metamorphosed schists and gneisses of the Koralm Crystalline Complex. Sericitization and chloritization are strictly bound to this alteration and occur within a few meters of the hematite veins. Radiometric dating of the sericitization and the implicity of the mineralization yield a Middle Eocene age. Petrographic evidence proves an early, relatively reduced paragenesis (magnetite, ilmenite) being partly replaced by hematite and chlorite during the main phase of ore formation. Fluid inclusion and stable isotope investigations indicate that formation temperatures were approximately 300  °C during the main stage and decreased to 200  °C in the latest stage of the hydrothermal event. The H-isotope compositions of chlorites and of fluid inclusions in quartz indicate the influence of seawater. This also explains the high salinities determined by fluid inclusion studies (20–30% NaCl equiv.). According to the genetic model presented in this paper the hydrothermal activity started when the deformation accompanying the uplift of the Koralm Crystalline Complex passed from a ductile to brittle regime (Middle Eocene). The brittle faults acted as channelways for rising, deep fluids, probably of metamorphic origin. Temperature differences between the different uplifting crustal segments supported fluid circulation. Precipitation of the ore occurred at shallow crustal levels where the hydraulic regime was dominated by seawater, and oxidation of the original reducing fluids took place.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 84 (1995), S. 831-842 
    ISSN: 1437-3262
    Keywords: Austroalpine Crystalline Complex ; Tertiary mineralization ; Hydrothermal veins ; Stable isotope analyses ; Microthermometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The specularite deposit at Waldenstein is an epigenetic replacement/vein-type hematite mineralization with distinct alteration zones. It is situated in highly metamorphosed schists and, gneisses of the Koralm Crystalline Complex. Sericitization and chloritization are strictly bound to this alteration and occur within a few meters of the hematite veins. Radiometric dating of the sericitization and the implicity of the mineralization yield a Middle Eocene age. Petrographic evidence proves an early, relatively reduced paragenesis (magnetite, ilmenite) being partly replaced by hematite and chlorite during the main phase of ore formation. Fluid inclusion and stable isotope investigations indicate that formation temperatures were approximately 300°C during the main stage and decreased to 200°C in the latest stage of the hydrothermal event. The H-isotope compositions of chlorites and of fluid inclusions in quartz indicate the influence of seawater. This also explains the high salinities determined by fluid inclusion studies (20–30% NaCl equiv.). According to the genetic model presented in this paper the hydrothermal activity started when the deformation accompanying the uplift of the Koralm Crystalline Complex passed from a ductile to brittle regime (Middle Eocene). The brittle faults acted as channelways for rising, deep fluids, probably of metamorphic origin. Temperature differences between the different uplifting crustal segments supported fluid circulation. Precipitation of the ore occurred at shallow crustal levels where the hydraulic regime was dominated by seawater, and oxidation of the original reducing fluids took place.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 28 (1993), S. 28-36 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Gold-bearing quartz veins fill late-Alpine brittle structures in Pennine nappes of Austria (in the Tauern window) and in northern Italy. The veins formed in the latter stages of uplift of the Alps. Fluid inclusions in veins sampled from Böckstein, Austria, and Valle Anzasca, Italy have a wide variety of compositions, ranging from aqueous brine (about 5 wt% NaCl equiv.) to about 50 mol% CO2. At room temperature, the inclusions range with increasing CO2 content from two-phase aqueous, through three-phase in which the CO2 homogenizes to vapour, to three-phase with CO2 homogenizing to liquid. This wide range of inclusion compositions is interpreted as evidence for fluid immiscibility, with most inclusions being accidental mixtures of the two end-member immiscible fluids. The homogenization temperatures of the aqueous inclusions, 200–280°C, gives the best estimate of temperature of formation of the veins. Vein formation fluid pressure at Böckstein and Valle Anzasca was about 1 kbar, and Böckstein veins formed at lower pressure than Valle Anzasca veins. Fluid immiscibility may have contributed to deposition of gold at both Valle Anzasca and Böckstein, and possibly many other uplift-related Alpine gold localities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...